

Combining corpus-based and
linguistic models for Arabic

speech systems

Hanady Ahmed Allan Ramsay

 Arabic Department, CAS School of Computer Science
Qatar University University of Manchester

hanadyma@qu.edu.qa Allan.Ramsay@manchester.ac.uk

1

mailto:hanadyma@qu.edu.qa

A truth:

“Computers can do a lot of things
but computers are not good at
thinking about themselves. They
really need to be spoon-fed the
details”(Hetland.M, 2003).

2

The project

 This project is a joint project with Manchester university .

 It has been funded by the internal grants schema of Qatar

University 2010-2011.

 Qatar University and Manchester university have extended

this project to be : “Arabic Speech Recognition and

Understanding : A hiypred approach“, which is funded by

QNRF in the third cycle of NPRP projects)2010-2013(

3

Which Arabic Speech Systems?!

 Automatic generation (text-to-speech synthesis (TTS))

and recognition of spoken Arabic speech (automatic

speech recognition (ASR)) is a challenging task. (The
current presentation will focus on NLP for TTS)

 Automatic generation and recognition of any language is
hard enough, but Arabic has a number of properties that
make it even harder.(We are still in the first stage for
designing speech recognition system for Arabic)

4

Scope of the research

 The main aim of the proposed research, however, is

to extend the natural language processing engine

(NLP) –rule based- so that it can also be used as the

basis for a language model for TTS and speech

recognition.

 Speech recognition engines require a ‘language

model’ to help constrain the search for words that

match the acoustic properties of the speech signal.

Such language models are typically supplied as

context-free grammars.

5

Scope of the research (Cont.)

 The existing linguistic engine can be used to produce

analyses of input text which can in turn be used to convert

written text – to- speech signal and to generate a context-

free grammar of the kind that is required for speech

recognition.

 In order to use the current engine for these tasks, we need

to add corpus-based information, e.g. statistical part-of-

speech tagging, probabilities relating to various non-

canonical word orders, converting grapheme-to allophone

(GTA) rules, and to extend the lexicon.

6

The Challenges !!!

 In particular, the non-concatenative nature of
Arabic morphology and the range of permitted
word orders mean that is very hard to provide
language models of the kind that are required for
deriving speech synthesizers or for training speech
recognizers.

 The lack of diacritics in written Modern Standard
Arabic (MSA) make it difficult to determine the
underlying phonetic forms required for speech
synthesis.

E.X: ktb /katab/”wrote” , /kutub/ “books”, /kattab/
“made s. to write” , /kutib/ “been written”,…..

7

1- Word Morphological structure

 Arabic grammarians traditionally described all Arabic
words into three main lexical categories: Verb, Noun,
and Particle. These categories could be classified into
further sub-classes which collectively cover the whole of
the Arabic language.

 Morphologically, Arabic is very rich and based on root-
pattern structure. Most Arabic words are generated out
of a finite set of roots (about 7000) transformed into
stems using one or more of patterns (about 125). In
theory, a single Arabic root can generate hundreds of
words (noun, verbs). Arabic words may exist in
hundreds of shapes in normal text by adding certain
suffixes and prefixes (Kiraz 2000; El-Affandi 2002). Most
of those patterns are nominal patterns.

8

SurafceForm k aa t b

Root Tire k # t # b

 Vowel Tire aa i/a

 UnderlyingForm k #:aa t # b

 FullForm k aa t i b

Figure (1): Multi-Levels of

diacritization

9

2- Sentence Structure

 Free Word order: Arabic sentence structure allows free movements for
arguments of sentences around the predicate, for example, Arabic allows
six logically possible word orders for simple verbal sentence VSO (with
definite subject).

 Nominal Sentences:A nominal sentence is one where the subject precedes
the predicate (Mohammed 2000) . The subject and the predicate has
joined together without a copula.

 Construct phrase:Arabic allows an NP to function as a construct phrase
that has the semantic relations as the possessive meaning in English. The
two nouns in Arabic are joined together without any overt marker as:

 - ktaab? aalmdrs+i „teacher‟s book‟.

 case marker? +gen

 Zero subject: Main argument in a verbal sentence is a subject which could
be deleted ,i.e, or has value zero as we have treated it.

 - katab aaldars+a „he wrot the lesson‟

 V zero subject Obj

10

NLP Engine for Arabic TTS: Rule-based

 We have aimed to provide a text-to-speech system for modern
standard Arabic (MSA) that has concentrated on handling the next
issues:

 Diacritic assignment: (i.e. of recovering phonetically relevant
information, such as choice of short vowels, which is not explicitly
provided in the surface form of MSA). This is clearly a crucial
issue: you can hardly produce intelligible spoken output if you do
not know what the vowels are.

 Converting GTP : We describe an approach to the task of
generating phonetic transcription from MSA text .

 Intonation Contour : The Engine also provides the information
required for imposing an appropriate intonation contour for the
Arabic sentences.

11

Linguistic Model:
Text to Speech System (TTS)

Input
Text

Pre-processing Text

Morphological
Analyzer

Syntactic-semantic
Analysis

Phonological
processing

Phoneme to speech
signal

Speech

Acoustic
data
base

N
L
P

S
y
n
th

e
s
is

S
ig

n
a
l

12

Diacriticisation Mechanism

 We follow fairly standard practice by describing a word in
terms of a template and a set of fillers (e.g. (McCarthy
and Prince, 1990)).

 We use a categorial description of the way roots and
affixes combine (Bauer, 1983); in order to improve the
efficiency of the process of lexical lookup.

 We store the lexicon as a lexical tire and FST.

 We add a set of spelling rules to account for the
variations in surface forms that are observed under
various conditions.(details will be explained for Weak
verbs)

13

Computational framework

 {struct(positions(start(0), end(1), span(1), +compact, xstart(0), xend(1)),

 forms({y,a,k#t#b,0,uuna}, yktbwn))),

 morph(diacrits(choices(actvPres(["0", "u"]),actvPast(["a", "a"]),

 psvPast(["u", "i"]),psvPres(["0", "a"])),

 actual(["0", "u“]))),

 lextype(regular(i(1, "u"), a, 1))),

 syn(nonfoot(head(cat(xbar(+v, -n)),

 agree(third(+plural)),

 gender(-neuter, +masculine, -feminine)),

 vform(vfeatures(finite(+tensed, -participle, -infinitive),

 -aux,

 +active,

 view(tense(+present, -past, -future, -preterite, -free),

 subcat(args(["NOUN", "NOUN"]), fixed),

 foot(wh([]))),

 remarks(score(0))}
14

Computational framework (cont.)
 Input a sentence in arabic.

|: aaldrs

Found one

None like it. This one is no. 1

Everything we need should be encoded in the following list

[?,a,l,+,d,a,r,0,s,+,0,+,0,+,0,+,?,&]

This has now been changed into a list of phones

[phoneme(char(?), -vowel),

 phoneme(char(a), +vowel, -long, boundary(+morpheme)),

 phoneme(char(d), -vowel),

 phoneme(char(d), -vowel),

 phoneme(char(a), +vowel, -long),

 phoneme(char(r), -vowel),

 phoneme(char(s), -vowel)]

15

 Input a sentence in arabic

 |: ‘lm aalTalb.

Pitch markers have now been added

[phoneme(char(`),-vowel),

 phoneme(char(a),+vowel),

 phoneme(char(l),-vowel), /

 phoneme(char(l),-vowel),

 phoneme(char(a),+vowel,-long,

 pitch(pmark(high), FA),

 stress(stressed)), /

phoneme(char(m),-vowel,boundary(+morpheme)),

phoneme(char(a),+vowel,

 -long,

 boundary(+morpheme, +word)),&*

 phoneme(char(?),-vowel,+emphatic),

 phoneme(char(a), +vowel,-long,boundary(+morpheme),+emphatic),

 phoneme(char(T),-vowel, +emphatic),

 /

 phoneme(char(T),+emphatic),

 phoneme(char(a),+vowel,+long,+emphatic,

 pitch(pmark(high), FB),

 stress(stressed),

16

NLP output
 | ?- in arabic.

 Input a sentence in arabic

 |: drs aalwld.

 | ?- retrieve(19,P), syllabify(P,Q).cspeak('sound.pho', Q).

17

The Existing Linguistic Models

 The analyses produced by the linguistic engine are fine-
grained dependency trees, annotated with a variety of
syntactic and Morphological features.

 The linguistics models provides a phonological analysis
for Arabic words and sentences ,i.e, converting written
form into narrow phonetic transcriptions with assigning
stress and generating intonation contour.

18

Limitations

 Small Lexicon contains hundred of entries.

 Processing marked and un-marked short simple
sentence.

 Small ontology for sentences disambiguation.

 The main aim of the corpus-based NLP engine is to
improve the performance of the existing engine in the
face of long sentences and a wide vocabulary, by adding
statistical evidence to the existing rule-based approach
and by extending the lexicon using resources such as
Pen Arabic Treebank , Buckwalter Arabic morphological
analyzer.

19

Corpus

 Backwater Morphological Analyzer:

 DictStems:

sense: FullForm:HisAb_1//Translation:calculation

[[(SurafceFrom:'HsAb', FullForm:'HisAb', Tag:'N',
'calculation', '')]]

 Penn Arabic Treebank (PAT) : Treebank V.I.4.

20

Corpus-based NLP Engine

 We faced a number of challenges:

 Merging Lexicons: Automatically extracting the lexical
entries from BW lexicon and converting to our System
notations.

 TagSet: Understanding BW classifications for the
Lexemes (Verbs and Nouns).

 Filling the missing information in BW dictStems.

 Reclassification of senses.

 Checking sense translations.

21

First Stage: Merging Lexicons

 Thus the first stage of the research involves exploring
ways of getting better information out the BW lexicon to
leverage a large fine-grained lexicon of the Existing
system (PARASITE).

 We will see the details in the next set of the slides:

22

Lexicon: Nouns

 BW. Entry:

/*

k?t?b

sense: FullForm: kAtib_1//Translation:clerk TagSet:(N/ap)

[[(SurfaceForms'kAtb', FullForm:'kAtib', 'N/ap', 'clerk', '')]]

*/

 Parasite Entry:

"k?t?b" lextype regular(nominal,

 ['':[["A","i"]:_:regular(''):thing: masculine:[translation('clerk')]]], 1)

 ::: noun delayed ntype(simpleArabic).

23

Parasite output using BW lexicon: nominal Lexeme

 | ?- in arabic. kAtb^

| ?- | ?- underlyingForms.

3 -> {{{{{k?t?b,o(*deriv(1))},o(emptygender(*gender))},{_3887}},o(emptyDet)},
{_3883}} (kAtib+?+?, clerk: masculine: no of args=0)

2 -> {{{k?t?b,o(*deriv(1))},o(*tense)},{a}} (kAtab+a, correspond with: no of args=2,
+active)

 | ?- in arabic. kAtbAn^

 | ?- underlyingForms.

 2 ->{{{{{k?t?b,o(*deriv(1))},o(emptygender(*gender))},Ani},o(emptyDet)},{_3964}}
(kAtib+Ani+?, writer: no of args=0)

 | ?- in arabic. kAtbwn^

%% justWords wasn't set%%

 ::: %%%% Parse completed -

24

Lexicon: Verbs

 BW sense:

/*

sense: Hasib-i_1//regard

[[('Hsb', 'Hasib', 'PV', 'regard', ''), ('Hsb', 'Hosib', 'IV', 'regard', '')]]

*/

 Parasite Entry:

"H?s?b" lextype regular([["a", "i"], ["o", "i"], ["a", "i"], ["o", "i"]], a, 1)

 ::: verb

 delayed vtype(valency(1, [agent:living, object])).

25

Parasite output using BW lexicon: verbal Lexeme

|: yes| ?- | ?- in arabic. yktb^

Input a sentence in arabic

/**** DEPENDENCY TREE ***************

{{{{yu},{I,k?t?b}},o(tns1)},{_20215}}

----------------------------------****/

• This analysis had the following problems: _11714+_11715|:

• yes| ?- | ?- underlyingForms.

• 2 -> {{{{yu},{I,k?t?b}},o(tns1)},{_3524}} (yuIkotib?, dictate: no of args=2, +active)

• 3 -> {{{{ya},{k?t?b,o(*deriv(1))}},o(tns1)},{_3564}} (yakotub?, write: no of args=2, +active)

• 4 -> {{{{yu},{k?t?b,o(*deriv(1))}},o(tns1)},{_3747}} (yukat~ib?, make write: no of args=3, +active)

• 5 -> {{{{yu},{I,k?t?b}},o(tns1)},{_3396}} (yuIkotib?, dictate: no of args=1, +active)

• 6 -> {{{{yu},{I,k?t?b}},o(tns1)},{_3322}} (yuIkotab?, dictate: no of args=1, -active)

• 7 -> {{{{yu},{k?t?b,o(*deriv(1))}},o(tns1)},{_3541}} (yukat~ab?, make write: no of args=2, -active)

• 8 -> {{{{yu},{k?t?b,o(*deriv(1))}},o(tns1)},{_3358}} (yukotab?, write: no of args=1, -active)

• Yes

26

 | ?- Input a sentence in arabic

|: yktb Alrjl Aldrs

| ?- underlyingForms.

 5 -> {{al,{{r?j?l,o(*deriv(1))},o(emptygender(*gender))}},{_3531}} (al+rajul+?, man:
no of args=0)

6 -> {{al,{{{d?r?s,o(*deriv(1))},o(emptygender(*gender))},{_3928}}},{_3926}}
(al+daros+?+?, lesson: no of args=0)

2 -> {{{{yu},{I,k?t?b}},o(tns1)},{_3552}} (yu+I+kotib+?, dictate: no of args=2,
+active)

3 -> {{{{ya},{k?t?b,o(*deriv(1))}},o(tns1)},{_3590}} (ya+kotub+?, write: no of
args=2, +active)

4 -> {{{{yu},{k?t?b,o(*deriv(1))}},o(tns1)},{_3708}} (yu+ka~tib+?, make write: no of
args=3, +active)

Yes

|
27

Weak Verb

 Weak verbs are in fact regular verbs whose spelling
reflects a small set of phonological contractions.

 e.x: “w#q#f, q#w#l, r#m#y”

 Our analysis allows us to obtain „underlying forms‟ for
the surface forms of weak verbs which show how they
are related to their roots.

 Bw lexicon does not play a significant role for treatment
Weak verbs. Therefore , we edited our weak verb
conjugation tables and spelling rules.

28

Spelling rules

 1- Character:

 character(char(و(w)),

 underlying(”w”),

 vc(+vowel,+consonant, +long)).

 2- Format:

 /L/ P /R/=> Q (Chomsky and Hall 1968)

 3- The rule:

 %% 't$kyAn'=['tu$okawAni']

 [y]

 ==>

 [{w, +final}] :

 [_, "a"] ## ['A', x0, _] : X:-

 language@X <> arabic,

 -affix@X.

29

System analysis:

 | ?- runTests('$kw').

 /*3rd dual f*/

 Sentence: 44

runGrammarTest('t$kyAn'=['tu+$okaw+Ani'], _).

107 ->

{{{{tu},{$?k?w,o(*deriv(1))}},o(tns1)},Ani} (tu+$okaw+Ani, unknown: no of args=1,
-active)

Expected surface forms found: ['tu+$okaw+Ani']

Expected number of analyses found: 1

**

30

Tagger

 Version 1: trained on classical Arabic, where it achieves

 95% accuracy over a set of about 15 tags.

 Version 2: trained on Penn treebank, 96.4% over 43

 tags, 91% over 306 tags

E.X:

 The tagset includes markers for various kinds of clitics,
so that we classify ?akatbtuhum ؟ آكتبتهم ,for instance,
as qmarker+ V+PRO .

31

Parasr

 Initial experiments using trainable dependency parsers
achieve around 80% accuracy: not good enough to be
relied on (trained on 4000 sentences from Penn
treebank, tested on 1000).

 But good enough to provide a guide to the rule-based
parser, which is very slow on long sentences.

 This is currently under development.

32

Conclusions
 The basic problems of Arabic morphology are well

known. A single word may have numerous forms,
marking various syntactic features.

 We present a treatment of Arabic morphology which
covers the standard cases, but which has two significant
advantages:

 (i) We delay making decisions about the underlying form
until we have the information that is necessary for
getting the decision right.

 (ii) We can take account of the phonological processes
that produce the varying forms of „weak‟ verbs without
having to declare these verbs as belonging to a special
class.

33

Evaluation

 Combining corpus-based and rule-based linguistic
models provide:-

 A lexicon which has approximately 33,000 entries.

 A training data for test the efficiency of the tagger.

 A trainable dependency parsers to guide the rule-based
parser and to achieve high accuracy.

34

Future Work

 Recently, we have got another two kind of corpus: SAMA
analyzer and Prague Treebank.

35

Questions

Thank You

36

