Colliding Worlds

Academic and Industrial Solutions in Parallel Corpus Storage and Retrieval
Bettina Schrader, René-Martin Tudyka, Thomas Ossowski
text & form GmbH

{bettina_schrader, rene_tudyka, thomas_ossowski}@textform.com
Abstract
Academic researchers and industrial system developers take seemingly different perspectives on issues like corpus storage formats and retrieval. While the former focus on linguistic data and how to annotate and store it adequately, the latter pay attention to user-friendliness and performance. These perspectives seem so far apart that whatever is assumed mandatory by one group is judged an "exciter" in the other, and vice versa.

We discuss some academic and industrial requirements on corpus storage and access. In particular, we focus on the storage of a parallel corpus within a translation memory, and the performance of the data retrieval. We show that there are both differences and similarities between the solutions proposed by corpus linguists and industrial system developers. We further argue that, the two worlds of academia and industry are not as apart as perceived, and that future work will result in further harmonization between the two worlds.

1 Introduction
Within academia, there is a vital and lively discussion how corpus data should to be stored and accessed. The same questions arise within industrial software development. However, the answers provided by academia and industry seem opposite extremes.

Academia focuses on annotation schemes and equivalent storage formats where a storage format should i) allow encoding linguistic structures as precisely as possible, ii) be extendable to additional annotation levels, and iii) keep the annotations separable from the original data. As XML meets all of these requirements, it has become an important storage format, at the cost of relatively slow, unhandy data access. The industrial requirements for storing language data, however, are i) quick data access, iii) user-friendliness, and iii) a data format that is adequate only for the purpose at hand. Accordingly, corpus data is often stored in data bases due to their powerful indexing and data organization functionality. Linguistic annotations are kept to a minimum, and if possible, the data base structure is not changed at all.

Thus, finding a data storage format that satisfies the goals of corpus linguists and software developers alike seems difficult. A corpus linguist may put up with slow query processing, as long as the resulting data points are well-annotated and interesting. A translator, on the other hand, can do without linguistic annotations, but needs software that instantaneously presents him likely translation suggestions. Hence, the software developer will prefer speed over annotation detail and perfection
.
We discuss some of these academic and industrial requirements on corpus storage and access by focusing on one specific scenario: the development of a translation memory, i.e. a corpus query and storage system for parallel corpus data. Furthermore, we show how academic and industrial requirements may be brought closer together.
The paper is organized as follows: first, we discuss the perspectives of corpus linguists and software developers towards (parallel) corpus data, storage and access, as well as their typical answers to these issues (section 2). Then, we describe a sample application, the development of a translation memory system, and the corpus of translation examples on which we developed and tested the software, along with our evaluation setting (section 3). Afterwards, we walk through a few experiments that we conducted in order to develop and optimize the retrieval component of tf-test (section 4). We also discuss our experiment results in relation to the differences between the approaches of corpus linguists and software developers (section 5) and conclude (section 6).
2 Colliding worlds
2.1 The world of corpus and computational linguists

Within computational linguistics, and even more so within corpus linguistics, the focus is on language data and its annotation, for use in linguistic research and for developing new or improving existing computational linguistic tools
.
Accordingly, research has gone into issues with language data sampling, such as corpus representativeness and balance (cf. Biber 1993, Evert 2006), and annotation with metadata and linguistic information. Connected to these issues are considerations on how to arrive at adequate linguistic annotations, i.e. how to set up annotation guidelines, how to train and help annotators and how to semi- or fully automatically annotate corpus data (cf. Carletta 1996, Lambert et al. 2005, Wynne 2005). A relatively young issue in this realm is, furthermore, how to maintain existing corpora in the light of guideline changes, additions of new linguistic features, or simply correction of annotation errors (cf. Dickinson and Meurers 2003).
Common consensus is that any corpus storage format should conform to specific standards, e.g. by not changing the primary corpus data. Rather, even typos are retained in the primary data, and only corrected (if at all) on a separate annotation layer. Furthermore, the primary data is to be kept cleanly separable from the annotations, and the general understanding is, not surprisingly, that a corpus receives much of its usefulness from its linguistic annotations.
Research has also gone into corpus storage and format issues, though the focus has been on the definition of linguistically adequate and simultaneously flexible data formats such as XCES, tigerXML or PAULA, to name some that are based on XML (Ide et al. 2000, Ide 1998, König et al. 2003, Mengel and Lezius 2000, Dipper et al. 2007, Dipper 2005). However, within this research area, a remaining issue is whether to use standalone or embedded annotation, i.e. whether to mark-up linguistic annotation in the same file that contains the primary data, or to distribute primary data and annotations over several corpus files.

Finally, much research has gone into developing corpus query interfaces and workbenches. As can be expected, these tools reflect the focus on linguistic adequacy in corpus annotations as well as the research questions that the data has been sampled for. So specific tools have been developed to access syntactically annotated corpus data (TigerSearch, cf. Lezius 2002a, Lezius 2002b), parallel corpora (“Stockholm TreeAligner”, cf. Lundborg et al. 2007, Volk et al. 2007), or multi-level annotations (ANNIS, cf. Dipper et al. 2004).

In a sense, the research direction resembles a “top-down” procedure: The starting point are the linguistic questions and the data that are needed to answer these questions. These determine the requirement on corpus storage and, finally, corpus query. If and when these issues are resolved satisfactorily, further issues may be addressed. This procedure is necessary in order to maintain linguistic adequacy and hence usability of the data during all stages of corpus processing and corpus linguistic research. As they do not serve linguistic adequacy, issues like software performance and usability receive less attention.
2.2 The world of software developers and their users

During industrial software development, linguistic adequacy plays a role, albeit a minor one. A corpus is basically seen as the primary data currently at hand that should include all phenomena that frequently occur in the expected input. Furthermore, the corpus data may be edited if necessary. Annotations are important as long as the encoded (linguistic) information is necessary and sufficient for a specific purpose, and need not conform to linguistic standards. Annotations that are not necessary for the task at hand are almost invariably left out. For purposes in computer-assisted translation mentioned above, hence, a corpus contains information on sentence boundaries and sentence alignment, while other kinds of annotation need not be required. These considerations largely determine the direction during software development, in that questions of data formats and storage are kept as simple as possible.
These requirements can be exemplified using the XML-based interchange format for translation memories, the “Translation Memory eXchange”-format (OSCAR). Moreover, software such as translation memories may need to support customer specific formats as well as formats of related software products such as text processor tools. Summed up, system developers may adopt a “whatever the customer wants” –attitude towards formats.

However, it is important to remember that even TMX is used as an interchange format, i.e. translation memory software will be able to convert TMX-encoded data into whatever the software uses for storing corpus data. Generally, no translation memory needs to search directly on a TMX data file. Rather, a translation memory will parse the TMX file, extract the data and import it into a database, creating a powerful search index along the way. This dominance of databases over XML parsing is partially due to the performance differences between XML parsers and database retrieval functionality (cf. Nicola and John, 2003).
Databases furthermore supply the software developers with their powerful methods for ensuring data consistency, as they can e.g. define relations between tables and furthermore control the database behaviour with respect to insert, update, or delete operations. Another advantage of databases is their powerful indexing functionality for ensuring fast query response times. Hence, system developers focus on which database engines are best suited for their application rather than whether they should prefer databases over XML, or how to define a DTD.
Furthermore, the data storage format is usually quite rigid as i) new annotation information is rarely needed for the purpose at hand, and ii) data storage changes affect downward compatibility between a current and its preceding software versions, i.e. the usability of the software may be impaired if schema changes occur.
Finally, language data needs to be stored such that quick data access is guaranteed, as well as user-friendliness, and “technical” details are hidden from the user.
Thus, software developers take the opposite approach to the corpus linguistic top-down procedure. In a bottom-up fashion, linguistic annotation and new features are added as soon as they are required for the application, but not before. Hence an interchange format for translation memories must contain sentence alignment information, may contain word alignment information, but is extremely unlikely to provide further linguistic annotation.
2.3 Comparing the two worlds

Summed up, the worlds of corpus and computational linguists on the one side, and software developers and their users (in this case: translators) on the other, seem to focus on completely different aspects in corpus design and storage.

Corpus linguists focus none too surprisingly on the linguistic aspects of the language data, beginning with the careful sampling of the corpora. Furthermore, annotations are a must, and a great deal of effort is spent on ensuring that the annotations are precise and reliable. As this is a related issue, the exact definition of flexible and adequate corpus storage formats is also quite central to corpus linguistic research. Issues such as performance and usability, i.e. ease of use of the corpus access software, receive less attention up to the point that the cumbersome learning of specific query languages is implicitly accepted by the research community as well as long response times of corpus query tools.

Software developers, on the other hand, tend to have a less theoretically motivated attitude towards corpus data and annotations. In their context of software development, a corpus is the kind of data that comes with the task, and the corpus data is annotated if, and to the degree that, annotation is needed. Furthermore, data formats are considered vital and necessary e.g. for data interchange between different software for the same application. They are, for example, important for interchanging parallel corpora between different translation memory systems. As can be expected, standards are preferred as they increase the usefulness of the software considerably.
Furthermore, software developers focus on issues that corpus linguists generally neglect, such as specific data storage issues like which data base engines to use, how to index and structure a data base, or how to ensure that the software is easy to use. Finally, the performance of the software is a central issue, both in terms of speed and quality.
	
	Academia
	Industry

	Data
	Carefully sampled
	Frequently used

	Annotation
	Mandatory
	Exciter

	Data format
	All purposes,
XML preferred
	Interchange format,
standards preferred

	Data storage
	Mandatory
	MyISAM? InnoDB?

	Performance
	Exciter
	Mandatory

	Usability
	Exciter
	Mandatory

Table 1: Design issues for corpus linguists and software developers
So apparently, academia and industry are worlds apart when it comes to developing software for dealing with language data. Whatever the former focus on is considered an exciter for the latter, i.e. a feature to focus on when all other problems are solved. Vice versa, whatever is mandatory for the latter is not mandatory for the former. Partially, the difference is due to the respective approaches of researchers and developers, one being top-down, the other being bottom-up. Partially, of course, the technical expertise of the envisaged users as well as the specific application plays a role.
However, an interesting question is whether the perceived gulf between corpus linguists and professional software developers is insurmountable as well as inevitable. If the differences between the two approaches to corpora e.g. really stem from the basic differences between top-down and bottom-up procedures, then we would expect that a common ground will evolve as soon as corpus linguists move “down” to incorporate issues in performance and usability in their corpus software design, or as soon as software developers add “higher” functionality to their software that requires a greater amount of explicit linguistic annotation in the corpus data.
3 Example application and evaluation details
In the following, we describe our sample application, namely the translation memory system tf-test that we currently develop, and we describe schematically how it is used. Second, we describe the corpus that we used during the development for both software tests and evaluations. Third, we describe our evaluation data and procedure.
3.1 Translation memory system tf-test
We are currently developing the web-based translation memory system tf-test for use within computer-assisted translation. Its current state is that of a prototype undergoing extensive testing. As a translation memory system, it compares new translation documents to an existing database and presents the user – the translator – with translation suggestions whenever it finds similarities between the text fragments in the translation document and those in its database.

Basically, tf-test consists of four components,
· the backbone, a database containing a parallel corpus and an index,
· a powerful retrieval component that, given a segment in a source language, retrieves all those matches from the database that are highly similar to the query segment, along with their translations,
· corpus management functionality for breaking down a translation document into a sequence of segments as well as for adding new segments and their translations to the database, and
· the front end, a user interface that allows to access translation documents, and contains an editor for the actual translation work being done.
Furthermore, tf-test contains several text processing components for converting translation documents in formats into a system-internal representation.
3.2 A schematic translation workflow

The whole process of translation works roughly as follows: the translator starts the process by loading a translation document into tf-test, which in turn converts the document content into a system-internal representation, and breaks down the text into segments. Afterwards, the translator steps through the segments of the text. For each segment, tf-test queries its internal database whether it contains one or more translation pairs where the source language text bears at least a 75% resemblance to the segment in question. If the query returns a result, it is displayed to the translator for inspection. He may then accept a specific translation pair, in which case the segment is replaced by the target language text of the translation pair, or select a translation pair for editing. In these cases, the edited translation pair is inserted into the database for further use.
The challenges faced by the translation memory system are thus i) fast search retrieval as the translator must be able to rapidly work through a translation document, ii) exact and fuzzy search on the database for finding good translation pairs despite typos, word order permutations, etc., and iii) concurrent update of the database including updating the search index.

3.3 Parallel corpus
The parallel corpus that is contained in the backbone of the translation memory system consists of previous translation work, namely segments in a source language and their translations in a target language. Segments bear some resemblance to sentences in that a sentence will invariably constitute a segment. However, a segment need not be grammatically well-formed. Rather they may be headlines, list items, head words, etc. In other words, a segment is either a sentence or a sequence of words contained in a heading, table cell or other textual element. Hence, breaking a translation document down into segments is a hybrid between parsing a document, i.e. extracting text from the structural elements of the document, and determining sentence boundaries.
As all segments of a translation document are either contained in the corpus, along with their translations, or are inserted into the corpus after having been translated, the corpus is constantly growing in size. Typically, it is also topic-specific in that it contains e.g. only segments extracted from software manuals (figure 1).
[image: image4.png]sourcePlain
Verwenden Sie zum Anschluss der Positions- und Ges
Wie das Schadensbild eindeutig zeigt, wurden die B.
Die wichtigsten Bauteile sind

zerstort

Das Kabel zur Ubertragung der Signale muss fir EIA
Das Gerat ist somit unreparabel

Magliche Ausfallursache:

Elektrische Sicherheit:

Funktionale Sicherheit

Der Maschinen-/Anlagen-Hersteller

targetPlain
Use only shielded cables to connect the position a.
‘The inspection revealed that the components have b
‘The most important components have been
destroyed.

‘The cable for transmitting signals must be suitabl
‘Thus the damage is ireparable.

Electrical safety
Functional safety:
‘The machine/system manufacturer

Figure 1: Example: parallel corpus
Segments may not constitute consecutive text, and may be highly similar, differing only due to morphological variants or different markup (e.g. boldface versus normal text weight).
The parallel test corpus for tf-test consists of 590.384 segments extracted from technical manuals in mechanical engineering in German and English. We take it to be representative for the kinds of corpora that tf-test will be used with as they will primarily contain of technical documentation in style and grammar. Only the specific vocabulary, i.e. the technical terminology, will most probably differ.
We also computed the segment lengths in the German part of the corpus in order to have some indication of the translational complexity within the corpus
. On average, a segment is 67 characters long, with 25% of the segments being significantly shorter (1-22 characters) and another 25% of the segments being longer than 96 characters. The corpus also contains a few extremely long segments, the longest being 1013 segments long.

	Minimum
	1st Quartile
	Median
	Mean
	3rd Quartile
	Maximum

	0
	22
	48
	66.74
	96
	1013

Table 2 Sentence length statistics
3.4 Evaluation data
In order to evaluate the retrieval quality of tf-test, we are using a 400.000 segments subset of the development corpus, having reserved the remaining 190.000 segments for intensive statistical testing later on. For the qualitative evaluation reported here, we are using a manually defined testsuite containing 50 segments.

For the testsuite, we extracted 50 segments from the 400.000 segments subset. This is to ensure that tf-test is able to find suitable translation pairs during the evaluation. We made sure that sentence lengths differed along the variation found in the development corpus, i.e. that the evaluation suite contains short sentences (less than 22 characters) as well as long sentences (more than 96 characters) and sentences with lengths between 22 and 96 characters
.

In a second step, we carefully modified the extracted segments to deviate from the development corpus in certain ways such that tf-test may not always find translation pairs with 100% similarity. Rather, tf-test will have to conduct a fuzzy search in most cases. The modifications include
· typos, i.e. spelling errors have been introduced into the respective segments

· stemming, i.e. one or more words of the respective segments are truncated,

· permutations, i.e. the word order within the respective segments has been changed.

A segment may have undergone several different types of modifications. After the modifications, all segments are still syntactically correct. Semantically, however, they may be weird (table 3).
	Test segment
	Original
	Similarity
	Modification

	Ersatzteilabteilung
	Ersatzteilabteilung
	100%
	-

	die einfache Austauschbarkeit der Komponenten wie Kabel und Motor.
	die einfache Austauschbarkeit der Komponenten wie Motor und Kabel.
	91.18
	Word permutation

	Aufzeichnung von zwei Kanälen
	Aufzeichnung von drei Kanälen
	87.09

	Word replacement

	Planetenrollengewindegetriebe
	Planetenrollengewindetrieb
	84.75
	Morpheme replacement

	Wie sehr brachte sich der Trainer selbst ein?
	Wie bringt sich der Trainer selbst ein?
	77.27
	Word insertion, morph. variation

	Falls kein einvernehmlich Lösung finden werden, werden d Prozentsatz von 30% bzw. 14 % um d Hälfte kürzen.
	Falls keine einvernehmliche Lösung gefunden wird, wird der Prozentsatz von 30% bzw. 14 % um die Hälfte gekürzt.
	<75%
	Lemmatization

Table 3: Example evaluation data
Furthermore, the modified segments also show different degrees of similarity towards their “originals” in the development corpus, i.e. one segment may be 90% similar to one in the translation memory corpus, while another will show only 77% similarity, measured using Minimum Edit Distance. Overall, the evaluation suite contains five 100%-matches, six matches with a similarity of 90-99%, 18 with a similarity of 80-89%, six with a similarity of 75-79%, and 15 with a similarity lower than 75%. The latter group is included to test whether the retrieval quality of tf-test drops so low as to include matches that should not be found at all (table 4).
	Match type (%)
	Short segment
	Medium segment
	Long segment
	overall

	100
	1
	3
	1
	5

	90-99
	0
	3
	3
	6

	80-89
	6
	6
	6
	18

	75-79
	2
	3
	1
	6

	<75
	4
	9
	2
	15

	Overall
	13
	24
	13
	50

Table 4: Match type distribution in evaluation suite
3.4 Evaluation procedure
For the evaluation, we composed a translation document containing all 50 sentences of the evaluation suite, and submitted it to tf-test for automated translation. Second, we used precision and precision, defined as
precision =
[image: image1.wmf]
[image: image2.wmf]

matches

found

#

matches

correct

#

 and recall =
[image: image3.wmf]corpus

in the

matches

#

matches

correct

#

in order to monitor the tf-test retrieval quality. Furthermore, precision and recall were computed for matches with ≥ 75% similarity. Finally, we measure the average CPU time needed for translating the document and averaged the result over five iterations.
4 Application development

During the development of tf-test, we focused on the organization and indexing of the database as it influences how well tf-test supports multilingualism, in particular how well the software stores and accesses segments in parallel corpora with translations from one source language in more than one target language
.
Another issue has been the performance of the retrieval component, both in terms of the quality of the search results and in terms of the speed with which exact and fuzzy matches to a given segment are retrieved from the corpus.
Both retrieval quality and speed are vital for the marketability of tf-test.
· Retrieval quality needs to be high in order to ensure that a translator is presented with optimal translation suggestions, i.e. suggestions that need minimal editing.
· Retrieval speed must be high as long response times correspond to long waiting times for the translator, as well as less translation work done per day
.
We measured the performance of the retrieval component using the evaluation data and procedure described above (section 3.4) and, if results were not optimal, we investigated how to improve the performance.
Here, we are reporting on the initial database structure and retrieval method, as well as on some improvements both in terms of database organization and in terms of necessary performance optimizations of the retrieval component.
4.1 Initial database structure

[image: image5.jpg]-

source

target

Feld

Typ
int(11)

varchar(1024)
varchar(1024)

Kollation

utf3_bin
utf3_bin

The parallel corpus of the tf-test translation memory system is stored in a MySQL database, initially in a single corpus data table. This data table does not only contain all segments of the corpus, but also logs for each segment its id and the translation of the segment (figure 2).
Figure 2: Initial corpus table definition

So in a sense, the database structure corresponds to an embedded format where corpus text, namely the source segments and their translations, and annotations, i.e. ids, information on formatting etc., are closely tied together. Obvious advantages of this organization are
· the database structure straightforwardly encodes the relations between data and annotations,
· the retrieval of a segment can include its translation and annotation without accessing another data table.
However, when extending tf-test to allow for more target languages per source language, disadvantages became apparent. The structure does not elegantly support multilingualism. For each new combination of source and target language, the whole corpus data table has to be duplicated to accommodate the new source-target language pair. This also means that redundancy is increased whenever a new text is translated into several languages using the same corpus. In this case, all of its segments will have to be inserted into all relevant corpus tables. Hence a segment like German “Sicherheitshinweise” (safety notes), being translated into English, French, Italian, and Spanish, to name but a few languages of the European Union, would be inserted four times into the database (once for each language).

4.2 Improvements in the data organization

Accordingly, we have split the corpus data table into two, segments and translations, thus getting closer to a standalone annotation. Translation relations are realized by linking target language translations to their source language segments using a segment id or similar pointer.
The advantages are obvious. Multilingualism is supported by duplicating only that part of the data structure needed to accommodate the new target language information. This leaves the problem how to address the correct target language translation table. However, this can be solved with very simple means
.
Furthermore, adding a new source language is also facilitated as the segments table may be duplicated, too. Finally, the amount of redundancy in the source language information, i.e. in the segments, is reduced to a minimum as each segment need be inserted in the corpus exactly once.
4.3 Database access and data retrieval

The retrieval component responsible for presenting the translator with suitable translation suggestions operates only on the source language segment information, either directly on the segments data table for finding 100% matches
. Or, if this search does not return a result, a custom made, tf-test-specific index is used for finding fuzzy matches, i.e. for segments that show a high degree of similarity to the query segment, but are not identical to it.
This search index consists of a single table that contains all trigrams of the source language segments, together with the segment ids that the trigrams occur in. Using the trigram index, finding a segment in the database amounts to splitting a query segment into its trigrams, and looking up each trigram in the index. As a result, the retrieval component returns lists of matching segment ids and it estimates the match similarities using the trigram intersection between the query segment and each match. The higher the number of trigrams in the intersection, the higher is the similarity between the query segment and the matches.
Using this index and retrieval algorithm, a search on the 400.000 segments subset of our development corpus takes 4.718 sec/segment on average, with a precision of 100% and a recall of 92%. It is important to remember that we included segments without matches in the corpus. Hence the system is not able to achieve 100% recall. In fact, 92% recall with 100% precision corresponds to finding all correct matches with at least 75% similarity while not finding any match with a similarity below that threshold. Thus, 100% precision and 92% recall constitute a perfect retrieval result.

However, while the retrieval speed seems decent, this is far from satisfactory for the real life application of tf-test. At this speed, translating an average document with about 3500 segments would take roughly 5 hours at least, not counting the time the translator has to edit the translations.
4.4 Performance improvements: restricting the search space
In order to boost the performance, we investigated how to optimize the tf-test search index. Specifically, we tried to reduce the size of the index by excluding highly frequent trigrams from the search. Accordingly, we computed the frequency distribution of all trigrams in the German segments of the corpus, and compiled several stop trigram lists using the following absolute frequency thresholds:
· 50,000, resulting in a list of 43 stop trigrams,
· 10,000, resulting in a list of 511 stop trigrams,
· 5,000, resulting in a list of 1,081 stop trigrams, and
· 1,000, resulting in a list of 3,484 stop trigrams,
Additionally, we modified our search algorithm to ignore any trigram during the search that is contained in the currently loaded stop trigram list. The stop trigrams are also ignored during the similarity estimation. However, whenever a new segment was inserted into the corpus, all of its trigrams were inserted to the index, irrespective of whether they were contained in the stop trigram list, or not. Although it would seem preferable to exclude stop trigrams throughout tf-test and not only during the search, we deemed it cautious to keep the information in the database. That way, if the stop trigram list was modified e.g. by removing a trigram from the list, it could instantly be used for the search, i.e. changing the stop trigram list does not require a recompilation of the search index.

Finally, we re-evaluated the performance of tf-test both in terms of speed and retrieval quality, and varied on the choice of stop trigram list. As can be seen (table 5), using a stop trigram list immediately results in faster retrieval without a noticeably decrease in retrieval quality
. Furthermore, while the size of the stop trigram list influences the search performance considerably, neither the number of trigrams in the list increases linearly
, nor does speed.
	threshold
	# stop trigrams
	Retrieval speed (sec/segment)
	Precision (%)
	Recall (%)

	No
	0
	4.718
	100
	92

	50,000
	43
	3.047
	100
	92

	10,000
	511
	1.718
	100
	92

	5,000
	1,081
	1.406
	100
	83

	1,000
	3,484
	1.328
	100
	75

Table 5: Evaluation
However, even the smallest stop trigram list reduces the retrieval speed by approximately a fifth to 3 seconds/segment, while the biggest stop trigram list results in a speed decrease of roughly 70%, to 1.3 seconds/segment. However, the performance difference between using a stop trigram list containing 1,081 does not differ much from using one with triple the amount.

In terms of quality, the effects of using any stop trigram list are not nearly as dramatic as they are on the speed of the retrieval. However, as can be expected, there is a trade off between the size of the stop trigram list and the quality of the retrieval. In this case, the optimum threshold for the stop trigram list, resulting in a high gain in performance without losing too much in terms of precision and recall seems to be a frequency value of 10,000. However, even a threshold of 5,000 results in a decent retrieval quality.
Using this rather low threshold, translating the above-mentioned document containing 3500 segments would take roughly 90 minutes, i.e. by using stop trigrams, we are able to reduce the retrieval time by 70%.
4.5 Summary

Summed up, both the initial database structure and the retrieval component could be optimized with very simple means. The database structure corresponded at first to a kind of embedded annotation where corpus information, the source language segments and their translations, were stored in a single table, along with metadata annotations. As this database structure proves inflexible with respect to multilingualism, it has been revised. Furthermore, the changes that have been made in the database structure are such that the redundancy in the corpus data is kept to a minimum.
As has been argued, splitting the corpus data table into language specific table facilitates multilingualism while keeping redundancy at a minimum. Furthermore, the revised database structure has moved a step away from the embedded annotation style by separating the languages and the corresponding annotations. While the structure may still be called embedded, it should be clear that the tendency points to a database structure that corresponds to standalone annotation, i.e. a structure where annotation details are available in separate tables and linked to concrete segments if applicable. As the current state of tf-test does not require detailed linguistic annotation, however, we leave spelling out the database structure for the moment.
With respect to the retrieval component, the initial performance has proven to be satisfactory in terms of retrieval quality. However, as the retrieval speed was rather low, we had to improve the performance by adding a stop trigram list to the corpus annotation and using it to exclude frequent trigrams from the retrieval. Our experiments clearly show that using this very simply mechanism, it is possible to achieve a considerable gain in performance without negative effects on retrieval quality.
However, it should be kept in mind that we have used a rather small evaluation suite, i.e. repeating the evaluation with a larger or different data set will invariably lead to different results. Furthermore, we have experimented with a relatively big development corpus, thus the number of the stop trigrams depends considerably on the development corpus. On smaller corpora, we may well need to use different frequency thresholds and other trigram collections. In order to account for different corpora and hence different optimal stop trigram lists, we have ensured that the stop trigram list may be changed easily. Finally, as we have reserved an additional corpus subset containing 200,000 segments for further testing, we can repeat the evaluation on a larger, randomly chosen data set.
5. Twin star systems

5.1 Similarities and differences

As should be clear from the previous section, corpus storage and design in tf-test do not correspond well to best practices in corpus linguistics, nor does the rigid focus on performance. Rather, the initial database structure may seem naive from a corpus linguistic point of view, and the parallel corpus is not sampled to satisfy requirements on balance. However, we are sure that it is representative of the kind of texts that will be translated with tf-test, i.e. we can expect it to contain those phenomena frequently encountered during translation work.
Furthermore, the corpus annotation is rudimentary as it basically consists of metadata on each segment and translation. But apart from the trigram index, the corpus does not have a more linguistic annotation layer. With respect to corpus data and annotation, therefore, the gulf between corpus linguistics and software development exists as we expected.
However, the case is different when it comes to the improvements done on the database structure and the correspondences between this structure and standard corpus linguistic approaches. With these improvements, the tf-test database structure moves away from its initial naive state towards a richer corpus structure by separating source and target language segments into different tables. Furthermore, there is a correspondence between standard embedded corpus storage formats and the table structure in the tf-test database. In both cases, annotations are closely tied to the primary corpus data. We also hedge that as soon as more (linguistic) annotation is needed within tf-test, the database structure will be revised to move even closer to resembling standalone annotations. In this light, there does not seem much difference between standalone or embedded annotations encoded in XML formats like XCES on the one hand, and the ways corpus data tables can be defined in a MySQL database. Rather, the two approaches seem to be just two sides of the same coin.
	
	Academia
	Industry

	Data
	Carefully sampled
	Frequently used

	Annotation
	rich
	rudimentary

	Data format
	XML and MySQL: two sides of the same coin

	Data storage
	

	Performance
	Exciter
	Take fastest coin side

	Usability
	Exciter
	Mandatory

Table 6: Design issues for corpus linguists and software developers

When it comes to the performance of tf-test, the differences between the two worlds may be most obvious, as response times of approximately five seconds per segment seem completely acceptable at first sight. Hence this performance issue might seem negligible. However, in relation to the size of translation documents and the time and costs needed to translate them, performance considerations do come into play. In this light, five seconds per segment are clearly inacceptable. As we have also shown, the performance can be boosted with very simple means: By using statistical corpus information on the trigrams in the corpus, we have been able to create a powerful search index. So if we consider XML data formats and MySQL database structures to be two sides of the same coin, then the choice of system developers simply falls to the fastest side of the coin. Interestingly, as our solution at increasing performance shows, taking the fastest coin side may also imply using statistical corpus information like information on its trigram frequency distribution.
Finally, the two worlds of corpus linguistics and software development do not exactly resemble colliding worlds. Rather, their different approaches towards corpus storage and annotation disguise the similarities in the solutions found. Even within corpus linguistics, it is perfectly allowed to use specialized corpora for specific applications, and the amounts of linguistic annotation differ across applications, too. So the differences in corpus data and annotation discussed here are differences in degree rather than incompatible points of view. Furthermore, solutions in corpus (storage) formats are found along similar lines, and we argue that the differences found here are basically those between top-down and bottom-up approaches. Finally, only the different foci on performance and usability persist.
5.2 Future synchronization directions

As we have argued above, we hedge that the differences in corpus storage and formats will diminish as soon as systems like tf-test begin to incorporate more linguistic annotations. More sophisticated search and retrieval methodology may supersede trigram indices and stop trigram lists. Furthermore, translation memory systems may incorporate functionality that will certainly require additional resources, both in terms of corpus annotations and corpus processing tools. One such direction is to integrate a terminology or dictionary lookup into the system. In this case, a translation memory system would not just look up a segment in its corpus. Rather, it would also tokenize and lemmatize the segment in order to check whether the segment contains relevant terminology
.

Other alternatives for bringing the worlds of corpus linguistics and system development together are issues in data compression, i.e. how to store a corpus and its annotations efficiently while simultaneously keeping redundancy at a minimum, as well as issues with respect to corpus maintenance. In corpus linguistics as well as in every day translation work, typos and annotation errors impede the usefulness of a parallel corpus. Moreover, changes in the annotation scheme or the database structure have severe implications on the consistency of the corpus and hence need to be addressed. In these areas, corpus linguists and system developers may both profit from cooperating.
Last but not least, if the focus of corpus linguists shifts towards performance issues, the solutions they come up with may be more sophisticated and efficient than current solutions, while they may still profit from system developers experience as well as attention to usability.
6 Conclusion
To conclude, we have shown that academic researchers and industrial system developers take seemingly very different perspectives on issues like corpus storage formats and retrieval. While the former focus on linguistic data and how to annotate and store it adequately, the latter pay attention to details like user-friendliness and performance. Furthermore, the perspectives seem so far apart that whatever is assumed mandatory by one group is taken to be an exciter in the other, and vice versa.

In order to gain a deeper understanding of the perceived differences, we have used an example application, the development of a translation memory system, to highlight which choices were made during system development and how they relate to the perspectives of corpus linguists and system developers. In this application, we have focused on two central issues: one concerns the data storage, in this case a parallel corpus, and the other the performance of the data retrieval. With respect to the corpus storage, we have shown that there are in fact differences to solutions proposed by corpus linguists. However, we have also shown that requirements of the application such as supporting multilingualism and reducing redundancy let the database structure move closer to data formats suggested within corpus linguistics. In terms of performance, we have assessed the retrieval component in a qualitative evaluation to ensure that it retrieves appropriate matches, and we have monitored response times. The response times have been shown to be insufficient, hence we showed how to boost the performance, without overly degrading the retrieval quality. When using approximately 1000 stop trigrams, the system achieved a performance of 1.406 sec/segment with a recall of 83% and a perfect precision.
We have also related our experiment results to the initially discussed differences between academic and industrial approaches to corpus storage and retrieval. Particularly the improvements achieved on the database structure show that the two worlds of academia and industry are not as far apart as perceived. Rather, their solutions to corpus storage appear as two sides of the same coin, with industrial solutions moving closer to academic ones if the application at hand warrants it.

Finally, we argue that further improvements and extensions on systems like tf-test will result in further harmonization between the two worlds, as e.g. incorporating more linguistic information into the parallel corpora used by a translation memory system will reflect in database structure changes. Furthermore, we hedge that changes will move towards academic standards in standalone annotations. Last but not least, we argue that both academia and industry may profit from cooperation.
7 References

Biber, D. (1993) Representativeness in corpus design. Literary and Linguistic Computing 8(4), 243-57

Carletta, Jean (1006). Assessing Agreement on Classification Tasks: the Kappa Statistic, Computational Linguistics 22(2), 249—254

Dickinson, M., and W. D. Meurers (2003). Detecting Inconsistencies in treebanks. Proceedings of the Second Workshop on Treebanks and Linguistic Theories (TLT 2003), Växjö, Sweden

Dipper, S. (2005). XML-based Stand-off Representation and Exploitation of Multi-Level Linguistic Annotation. In Proceedings of Berliner XML Tage 2005 (BXML 2005). Berlin, Germany.

Dipper, S., Götze, M., Stede, M. and Wegst, T. (2004). ANNIS: A Linguistic Database for Exploring Information Structure. In Ishihara, S., Schmitz, M., Schwarz, A. (Eds.), Working Papers of the SFB632, Interdisciplinary Studies on Information Structure (ISIS) 1. Potsdam: University publishing house Potsdam, 245-279

Dipper, S., Götze, M., Küssner, U. and Stede, M. (2007). Representing and Querying Standoff XML. In Proceedings der GLDV-Frühjahrstagung.

Evert, S. (2006). How random is a corpus? The library metaphor. Zeitschrift für Anglistik und Amerikanistik 54(2), 177 - 190

Ide, N. (1998). Encoding Linguistic Corpora, Proceedings of the Sixth Workshop on Very Large Corpora, Montreal, Canada

Ide, N., P. Bonhomme and L. Romary (2000). XCES: An XML-based Standard for Linguistic Corpora, Proceedings of the Second Language Resources and Evaluation Conference (LREC), Athens, Greece

König, E., W. Lezius, and H. Voormann (2003): TIGERSearch 2.1 User's Manual, IMS, Univ. Stuttgart, Available at: http://www.ims.uni-stuttgart.de/projekte/TIGER/TIGERSearch/manual_html.html (accessed: 22 September 2009)

Lambert, P., A. de Gispert, R. Bancs and J. B. Mariño 2005). Guidelines for Word alignment evaluation and manual alignment. Language Resources and Evaluation 39(4), 267-285

Lezius, W. (2002a) TIGERSearch - Ein Suchwerkzeug für Baumbanken (German) In: Busemann, S. (ed.): Proceedings der 6. Konferenz zur Verarbeitung natürlicher Sprache (KONVENS 2002), Saarbrücken, Germany

Lezius, W. (2002b). Ein Suchwerkzeug für syntaktisch annotierte Textkorpora (German) Ph.D. thesis, IMS, University of Stuttgart Arbeitspapiere des Instituts für Maschinelle Sprachverarbeitung (AIMS), volume 8, number 4.

Lundborg, J., T. Marek, M. Mettler and M. Volk(2007). Using the Stockholm TreeAligner. In: Proc. of the 6th Workshop on Treebanks and Linguistic Theories. Bergen, Norway

Manning, C. D. and H. Schütze (1999). Foundations of statistical natural language processing. Cambridge, Mass, London: MIT press
Mengel, A. and W. Lezius (2000). An XML-based encoding format for syntactically annotated corpora in: Proceedings of the Second International Conference on Language Resources and Engineering (LREC), Athens, Greece.

Nicola, M. and J. John (2003). XML parsing: a threat to database performance, Proceedings of the 2003 ACM CIKM International Conference on Information and Knowledge Management. New Orleans, Louisiana, USA

OSCAR (2009): Translation Memorx Exchange (TMX) Available at: : http://www.lisa.org/Translation-Memory-e.34.0.html, (accessed: 23 September 2009)

Volk, M., J. Lundborg and M. Mettler (2007). A Search Tool for Parallel Treebanks. In: Proc. of ACL Workshop on Linguistic Annotation. Prague, Czech Republic

Wynne, M (ed., 2005). Developing Linguistic Corpora: a Guide to Good Practice. Oxford: Oxbow Books. Available online at http://ahds.ac.uk/linguistic-corpora/ (Accessed 23 September 2009

� A corpus linguist may also accept a compromise when it comes to usability. In the software industry, however, a software developer will make sure that there is some decent ease of use as he cannot expect too much technical expertise from a standard user. However, we will not discuss this aspect of software development here.

� In the following, we will refer to both groups by the cover term “corpus linguists” as both groups tend to use corpora or at least work towards better corpus processing software.

� We assume that longer sentences will leave more possibilities to the translator for changing the word order or otherwise translating according to his or her personal style. Accordingly, with longer sentence, there may be less 100% matches in the corpus than shorter ones.

� Although we determined the proportions of short, long, and normal segments manually, we randomly chose the segments within each of these groups. So all segments of the evaluation suite are at least partially randomly chosen.

� A straightforward extension of this problem is the data organization if several source languages are contained in the corpus, which all may be connected to more than one target language. As the solution to this second problem can be straightforwardly inferred from the first, it will be omitted here.

� Informally put, the game plan is to reduce the amount and length of unavoidable coffee breaks.

� Another alternative would be to include a table column that encodes the target language e.g.in an ISO language code, and keep all translations within the same table. However, for big corpora like the development corpus here, merging all target language translation in a single table may lead to a decrease in retrieval speed, simply due to the table size. Obviously, sorting all translations into one structure does not make much sense from a linguistic point of view.

� To be more precise: on a database-specific index on the source column of the segments table.

� However, as the evaluation suite is relatively small with only 50 segments, there may be a decrease in retrieval quality when a larger evaluation corpus is used.

� This is not a surprise assuming a Zipfian distribution.

� In fact, we are currently experimenting how to integrate our terminology system into to-test.

_1315219745.unknown

_1315219787.unknown

_1315219500.unknown

