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Abstract:

The paper presents a method for the extraction of both local and relational frequency data from Constraint Grammar-annotated dependency corpora. Supported by a corresponding change in GrammarSoft's open source CG3 compiler formalism, the harvested statistical information is then expressed in the form of so-called numerical CG tags, and integrated into the rule body of an existing, hand-written rule-based Constraint Grammar parser (EngGram) at various levels. Relevant aspects of the Constraint Grammar paradigm are discussed in detail, as is the importance of semantic prototype classification and DeepDict-style collocation strengths in the face of sparse statistical data. Finally, we present a new evaluation tool for CG annotation, using it on output from the modified, statistics-enhanced English grammar. In our experiments, annotation accuracy (F-scores) for English text rose from 91 to 93.4% for syntactic function, and from 96.9 to 98% for part of speech.

1. Introduction

1.1. Constraint Grammar

Constraint Grammar (CG), a framework for robust parsing of running text (Karlsson et al. 1995), is a rule based methodology for assigning grammatical tags to tokens and disambiguating these tags drawing on different levels of information, morphological, syntactic or semantic. Several specific compiler implementations exist, with different degrees of expressive power and different user communities, but traditionally, rules build on lexical information and sentence context, providing annotation for e.g. part of speech (PoS), syntactic function and dependency relations in a modular and progressive way. The tag-based encoding scheme holds at all levels, structural information included, so even the of a deep syntactic CG parser will formally resemble that of a tagger, at least in unfiltered output:

(1)
Matters 
“matter” <ac> N S NOM 
@SUBJ> 
#1->2


had
“have” <aux> V PAST 
@FAUX 
#2->0


become
“become” <mv> V PCP2 
@ICL-AUX< #3->2


difficult
“difficult” ADJ 
@<SC
#4->3


$.


#5->0

(2)
The
“the” <def> ART
@>N
#1->3


last
“last” ADJ
@>N
#2->3


report
“report” <sem-r> N S NOM
@SUBJ>
#3->9


published
“publish” <vt> V PCP2 PAS
@ICL-N<
#4->3


by
“by” PRP
@<PASS
#5->4


the
“the” <def> ART
@>N
#6->7


IMF
“IMF” <org> PROP S NOM
@P<
#7->5


never
“never” ADV
@ADVL>
#8->9


convinced
“convince” <vt> V IMPF
@FMV
#9->0


investors
“investor” N P NOM
@<ACC
#10->9


$.


#11->0

In the example, following the VISL-style CG annotation developed and employed at Southern Denmark University, annotation is “verticalized”, and fields can be distinguished for word form, lemma (in quotes), part of speech (PoS) and inflexion (upper case), syntactic function (@) and dependency links between token Ids (#x->y). Secondary tags are adden in <...> brackets between lemma and PoS fields. Note that the word 'Matters' is ambiguous between a verbal reading (3rd person singular) and the noun reading (singular nominative), while 'become' is ambiguous not in terms of PoS, but between two different verbal readings (infinitive and participle), as are 'published' and 'convinced' (participle vs. past tense)

A Constraint Grammar rule handles such ambiguity through explicit contextual constraints, defining, as it were, what is allowed (SELECT rules) and what is not allowed (REMOVE rules) in terms of English word order, agreement, uniqueness etc. The rule below, for instance, states that a word cannot be a finite verb (VFIN) if it is followed by another, unambiguous (C) finite verb immediately to its right (position 1), unless (NEGATE) there is a noun or pronoun to the left (position *-1) with nothing but adverbs in between (BARRIER NON-ADV), followed by another nominative noun anywhere to the left (*-1) – as would be the case in the presence of a relative clause (e.g. 'the aspect that really matters had been ignored').

(3)
REMOVE (VFIN) 


IF (1C VFIN) (NEGATE *-1 N/PRON BARRIER NON-ADV LINK *-1 (N NOM)) ;

A mature Constraint Grammar typically contains thousands such rules for each annotation stage, morphological, syntactic, dependency etc., and rule blocks will be chained and reiterated successively, with each new stage exploiting the disambiguated information of the previous one.


In the paradigmatic landscape of natural language processing (NLP), Constraint Grammar is both a newcomer and an outsider, not easily to be placed in any existing camp. In its use of elaborate rules, CG resembles Chomskyan generative grammar, HPSG (Pollar &  Sag 1994) and topological field grammars (e.g. Diderichsen's Danish grammar), but unlike these it has little explanatory-descriptive power or ambition, and it uses its rules in a procedural, rather than declarative fashion. As a paradigm, rather than descriptive and explanatory, Constraint Grammar is methodological in nature, like statistical and machine learning systems, separating annotation method and linguistic interpretation. CG is descriptively closest to dependency grammar (e.g. Mel'cuk 1988), which has kindled both rule-based and statistical approaches. Focusing on what would be called edge labels in  dependency arcs, CG treats (syntactic) function as primary to (syntactic) structure, rather than implying the latter by means of the former, as generative grammar and field grammar would have it, at least in their original forms. On a cline between descriptively oriented theories on the one hand, and methodologically motivated approaches on the other, Constraint Grammar could be classified as follows:
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Illustration 1: Parsing paradigms

1.2. Probabilistic approaches to Constraint Grammar 

Notwithstanding continued activity in the traditional field of generative grammar, where some systems, such as AGFL (e.g Koster 1991) now achieve extensive coverage of real language, rule-based approaches, among them Constraint Grammar, are a minority in today's linguistics, as most robust taggers and parsers now employ statistical methods and machine learning (ML, e.g. CoNNL conferences), which are not as labour-intensive as rule-based systems, and cheap to retrain on different data, allowing the conversion of corpus-implicit data into working annotation systems. In this light, the only raison d'être for rule based systems is their depth and accuracy, and CG researchers have reported astonishing results for a number of different languages. However, in spite of the potential benefits, the rule-based and statistical camps have so far largely refrained from integrating their respective strengths into hybrid systems. Thus, the CG formalism has traditionally addressed probabilistics only in a very crude and “manual” way – by allowing lexical <Rare> tags and by providing for delayed use of more heuristic rules.

It would seem likely, therefore, that a performance increase could be gained from integrating statistical information proper into the CG framework. Two distinct paths can be followed here, addressing either the CG rules themselves or the context features (tags) used by them. One such experiment of the first type was carried out by Lindberg & Eineborg (1998), who used a Progol machine-learning system to induce CG rules  from a Swedish annotated corpus, reporting 97.7% recall with a remaining ambiguity of 1.13. In our own approach, we have focused on the second option – introducing statistical information regarding the feature tags used by Constraint Grammar rules.

Two arguments, in particular, favour the introduction of corpus-based probabilistic tags: 

· First, it is very hard, and inaccurate, to express lexical likelihood manually through <Rare> tags with any reasonable coverage. 

· Second, mature CG rule sets are labour intensive and contain thousands of rules, so we believe statistical information to provide a through-road to cost-effective improvements

· Corpus-based statistics should help to ensure a more uniform and stable performance at an earlier stage in grammar development, especially for less-resourced languages.

2. The project

To address these issues, our group at the University of Southern Denmark, in cooperation and co-financing with GrammarSoft, designed and programmed a statistical module for GrammarSoft's open source CG rule compiler, allowing the use of numerical frequency tags in parallel with, and linked to, morphological, syntactic and semantic tags. In order to produce results, of course, the new compiler features had to be complemented with the necessary statistical information, as well as integrated into grammatical rules and contexts. 

The project had thus 3 distinct phases, (1) formalism design and compiler implementation, (2) statistical data acquisition, (3) rule writing and grammar integration. Phase (1), of course, is language-independent, while steps (2) and (3) have to be repeated for each new language, albeit with the same infrastructure, and with a certain rule transfer potential for related languages.

For our experiments during the initial project phase we concentrated on English, though hybrid grammars were later built for a number of other languages, such as Danish, Spanish and Esperanto. Thus, for stage 2 (statistical data acquisition) we used our unmodified, preexisting CG system (EngGram) to analyze a number of English text corpora:

· BNC [http://www.natcorp.ox.ac.uk/], 80 million words used, written and spoken

· Europarl [Koehn 2005], ~ 27 million words

· a 2005 Wikipedia dump [http://www.wikipedia.com], ~20 million words

Of these, only the BNC can be called a balanced corpus, and though Wikipedia has a good spread across topics and fields, using it or the Europarl parliamentary debate transcripts in isolation would create a risk of accumulating skewed statistical data tables. A large Internet corpus (almost 1 billion words) was held in reserve, should results indicate a need for further data balancing, but was ultimately not used in the first phase of the project due to time constraints, since automatic analysis with deep contextual disambiguation – even at processing speeds of 200-2000 words/second - would haven taken weeks or even months of CPU time depending on server setup and priority.

From the morphosyntactically annotated corpora we extracted frequency information for both lemma_POS and wordform_tagstring pairs. The pair 'cost_N' / 'cost_V' is an example of part-of-speech ambiguity covered this way, but for word forms, a considerably larger tag string ambiguity is possible, as the following data sample illustrates:

(4) 
costing_ADJ 0.244 
(adjectival usage, e.g. Prenominal function)

costing_N_S 0.02 
(noun)

costing_V_PCP1 0.708 
(verbal usage, allowing object/adverbial dependents)

costly_ADJ 2.755 

cost_N_S 11.757 

costs_N_P 14.56 

costs_V_PR 3.165 
(present tense verb)

cost_V_IMP 0.024 
(imperative)

cost_V_IMPF 0.366 
(past tense, “imperfectum”)

cost_V_INF 4.376 
(infinitive)

cost_V_PCP2 1.259 
(participle)

cost_V_PR 2.204 
(present tense verb)

cost_V_SUBJ 0.006 
(subjunctive)

Note that cross-language abbreviations (IMPF, PCP) were used to allow for better comparability and portability of data and grammars across systems, and that tag strings were shortened in a few cases where no confusion is possible (costs_V_PR is distinct from cost_V_PR, even without a 3rd person singular marker, because of the surface form 's' in the compound entry).


In order to minimize the inclusion of misspelled forms, tokens with only 1 occurrence were ignored. Relative frequencies were normalized to 1:1,000,000, and rounded to 3 decimals, excluding forms with a frequency below this threshold, judging that a simple <Rare> tag would be preferable to a low-confidence figure in these cases. In general, it can be said that low frequencies will be prone to a higher error rate, since they are based on very few instances. A case in point are imperatives, which will be represented in the data base – with a low frequency – even for words like 'cost' where they are semantically extremely unlikely, simply because CG annotation is reductionist in the way it performs its disambiguation: Once a reading is suggested by the morphological analyzer, contextual rules have to cope with it, letting a few erroneous instances survive in odd contexts (e.g. Lists of isolated words). And even though semantic disambiguation rules can be formulated in CG, most rules in the current English system are still syntactic in nature, ill-equipped to handle, for instance, words without a clause around them. However, it is exactly such cases that a hybrid statistical approach could help to resolve. In this light, a non-zero frequency for 'cost' as imperative ('cost_V_IMP') is not detrimental, as long as it is clearly lower than the more likely alternatives. A second round of annotation, where statistical rules are incorporated, may well produce a flat zero frequency for certain imperatives, thus stabilizing the system as a whole in a boot-strapping fashion.


3. The system

3.1. Local statistical tags

The statistical corpus information acquired during phase 2 of the project was then made accessible for use in CG rules. All in all, the database contains 264,000 PoS-tagged fullforms (word forms) and 83,000 baseforms (lemma entries) with their resåectove frequency information. Technically, frequency entries are stored in .db files to be accessed by the morphological analyzer and its post-processor, Perl programs producing cohorts of potential readings for each word, as input for the CG disambiguation grammar. Three different statistical tags were added at this stage:

· <f:> the original 1:1,000,000 frequency, multiplied by 1,000 to avoid the decimal dot

· <b:> a lemma  (base form) frequency, summed over different inflexional forms

· <fr:> a locally computed relative percentage frequency for the current cohort

The latter provides a derived frequency percentage for each of a wordform's possible readings relative to the sum of all frequencies for this particular wordform. For wordforms with one reading only, <fr:> will be 100%, for non-inflecting words (e.g. Conjunctions, adverbs, prepositions), <f:> and <b:> will be identical. In the example sentence below, 'cradle' has low <f:> and <fr:> values for all three verbal forms, but that does not mean that the lemma 'to cradle' as such is rare – it's <b:> form is almost on par with the noun-lemma frequency 'cradle', because the verbal lemma includes other, more frequent, inflexional forms: 'cradled', 'cradling', 'cradles'. Past participles ('-ed' forms) are an exception, because a syntactically motivated subdistinction was introduced between active (ACT), passive (PAS) and stative (STA), retaining the general frequency tags for participles as a whole. In our grammar, frequency is here used only to distinguish participles from past tense '-ed' forms, while internal differentiation entirely relies on context, in particular, auxiliaries. 


A fourth, different, frequency tag is the <S:> expressing the likelihood of compound formation (high for 'age' <S;43>, low for 'cradle' <S:2>). The <S:> value was not calculated from the number of distinct multi-noun compounds, where the lemma in question enters as a second (last) part.

(5)

"<Anatolia>"

 
"Anatolia" <fr:100>  <f:19> <*> <Proper> <Lregion> N S NOM

"<has>"

 
"have" <fr:100> <f:423116> <b:1238970>  <x+PCP2> <vt> <vtk+ADJ> <v+INF> V PR 3S

"<been>"

 
"be" <fr:100> <f:247118> <b:3241050> <x+PCP2> <x+PCP1> <v+INF> <vk+N> <vk+ADJ> <into^vp> <with^vp> <vi-off> <vi-on> <vi-out> V PCP2 AKT

 
"be" <fr:100> <f:247118> <b:3241050> <x+PCP2> <x+PCP1> <v+INF> <vk+N> <vk+ADJ> <into^vp> <with^vp> <vi-off> <vi-on> <vi-out> V PCP2 PAS

 
"be" <fr:100> <f:247118> <b:3241050> <x+PCP2> <x+PCP1> <v+INF> <vk+N> <vk+ADJ> <into^vp> <with^vp> <vi-off> <vi-on> <vi-out> V PCP2 STA

"<a>"

 
"a" <fr:100> <f:2476737> <indef> ART S 

"<cradle>"

 
"cradle" <fr:98> <f:190> <b:200> <furn> <Lh> <temp> <secpart> <S:2> N S NOM

 
"cradle" <b:160> <vt> <vi> V PR -3S

 
"cradle" <fr:2> <f:3> <b:160> <vt> V INF

 
"cradle" <b:160> <vt> <vi> V IMP

"<for>"

 
"for" <fr:0> <f:2850> <b:2850> KS

 
"for" <fr:100> <f:990240> <b:990240> PRP

"<several>"

 
"several" <fr:6> <f:2870> <quant> INDP P NOM 

 
"several" <fr:94> <f:44585> <quant> DET P 

"<civilizations>"

 
"civilization" <fr:100> <f:133> <b:900> <HH> <secpart> <S:7> N P NOM

"<since>"


"since" <fr:19> <f:16840> <b:16840> KS

 
"since" <fr:2> <f:2160> <b:2160> ADV

 
"since" <fr:79> <f:70730> <b:70730> PRP

"<prehistoric>"

 
"prehistoric" <fr:100> <f:180> <b:180> ADJ POS

"<ages>"

 
"age" <fr:79> <f:1936> <b:14020> <f> <per> <secpart> <S:43> N P NOM

 
"age" <fr:21> <f:517> <b:4150> <vt> <vi> V PR 3S

"<$.>"

(part of speech tags: N=noun, <Prop>=Proper noun, V=verb, ADJ=adjective, ADV=adverb, INDP=independent pronoun, DET=determiner pronoun, PERS=personal pronoun, KS=subordinating conjunction, KC=coordinating conjunction, PRP=preposition, NUM=numeral; inflexion: S=singular, P=plural, NOM=nominative, GEN=genitive, PCP2=past participle, PCP1=gerund, PR=present tense, IMPF=past tense, INF=infinitive, IMP=imperative, 3S=3rd person singular, -3S=not 3rd person singular, PAS=passive, AKT=active, STA=stative/adjectival participle;  valency potential: <vi>=intransitive, <vt>=transitive, <vk>=copula verb, <x>=auxiliary, <PRP^vp>=preposition-governing verb;  subcategories: <def>=definite, <indef>=indefinite, <secpart>=second part in potential compound, semantic prototypes: <HH>=human group, <per>=period, <temp>=time point, <furn>=furniture, <Lh>=human functional place, <f>=feature

The different frequency types are useful for different purposes. Thus, simple <f:> frequencies can be used to judge the “safety” vs. “normalcy” of a reading as such, while <b:> frequencies are useful to generalize semantic information, e.g. in verb complementation frames. The relative <fr:> frequencies, however, proved to be the most important ones, providing a safety net with full lexical coverage for cases where manual rules did not (yet) cover certain ambiguity pairs, or only targeted a subset of more frequent words. To implement this “safety net”, we introduced layered threshold rules culling progressively less infrequent readings after each batch of linguistic-contextual CG rules. Also, frequency-based exceptions were added to a few more general rules. Finally, <S:> rules were used at the syntactic annotation stage to select (or remove) noun-to-noun attachments (e.g. 'stone age').

3.2. Relational statistical tags

While the main focus of the project described here, and the object of our evaluation efforts, are concerned with local (i.e. token-restricted) statistical tags, we did address relational statistical information in a sister project, DeepDict (Bick 2009), where corpus based “live” dictionaries of argument selection patterns and collocations were built for 7 languages (www.deepdict.com), and relational statistical information gathered for the DeepDict project has since been used to enhance Constraint Grammar rules. Though, in this case, Portuguese was used as the object language (the CG system PALAVRAS), rather than English, adaptation to English data is expected to be straightforward, since all necessary relational frequency information for English is already available from the DeepDict database.

The type of relational statistics extracted was dependency relations between lemmatized words and their syntactic function. For each language, available corpora were annotated with CG parsers and – subsequently – a dependency parser using CG function tags as input (Bick 2005), effectively turning almost a billion words of data into treebanks, with functional dependency links for all words in a sentence. For a number of corpora, only the last step was part of the DeepDict project, since CG annotation had already been performed by the corpus providers for their CorpusEye search interface (http:// corp.hum.sdu.dk). Table 1 provides a rough overview over data set sizes and parsers used.

	Language
	Corpus size and type
	Parser (cf. http://beta.visl.sdu.dk/constraint_grammar.html)
	Status

	Danish
	67+92M mixed text
	DanGram
	+

	English
	210M mixed text
	EngGram
	+

	Esperanto
	18N mixed text
	EspGram
	+

	French
	[67M Wikipedia, Europarl]
	FrAG
	-

	German
	44M Wikipedia, Europarl
	GerGram
	+

	Italian
	46M Wikipedia, Europarl
	ItaGram
	+

	Norwegian
	30M [+20M] Wikipedia
	Oslo-Bergen-Tagger / NorGram
	+

	Portuguese
	210M news text
	PALAVRAS
	+

	Spanish
	50M Wikipedia, Europarl

[+40M Internet] 
	HISPAL
	+

	Swedish
	60M news, Europarl
	SweGram
	+


Table 1: Corpora and parsers

From the annotated corpora, dependency pairs (“dep-grams” rather than traditional n-grams) were then harvested – after some filtering between syntactic and semantic head conventions -, using lemma, part of speech and syntactic function. In the token-numbered annotation example below, the subject 'Peter' (1. word) and the object 'apples' (6. word) both have dependency-links (#x->y) to the verb 'ate' (2. word). It is these links, together with mother and daughter tags, that constituted our “dep-grams”.

(6)
Peter “Peter” <hum> PROP @SUBJ #1->2


ate “eat” V IMPF #2->0


a couple of  ....


apples “apple” <fruit> N P @ACC #6->2

For prepositional phrases both the preposition and its dependent were stored as a unit, de facto treating prepositions like a kind of case marker. For nouns and numerals, in order to prevent an explosion of meaningless lexical complexity, we used category instead of lemma. For nouns, semantic prototypes were stored as a further layer of abstraction (e.g. <hum> and <fruit> in our example). For a verb like 'eat', departing from our example, this would result in dep-grams like the following:

(7)
PROP_SUBJ -> eat_V


cat_SUBJ -> eat_V


apple_ACC -> eat_V


mouse_ACC -> eat_V

With little further processing, the result could be represented as a summary “entry” for eat in the following way:

  {PROP,cat,<hum>,..} SUBJ --> eat <-- {apple,mouse,<fruit>,..} ACC

Obviously, the fields in such an entry would quickly be diluted by the wealth of corpus examples, and one has to distinguish between typical complements and co-occurrences on the one hand, and non-informative “noise” on the other. Therefore, we used a statistical measure for co-occurrence strength to filter out the relevant cases, normalizing the absolute count for a pair a->b against the product of the normal frequencies of a and b in the corpus as a whole:

 
C * log(p(a->b) ^2/ (p(a) * p(b)))

where p() are frequencies and C is a constant introduced to place measures of statistical significance in the single digit range. Our measure can be distinguished from  Church's Mutual Information measure in that it exhibits a higher (square) weighting of the actual co-occurrence, which we deemed more appropriate for lexicographical purposes – preventing strong but rare or wrong collocations from drowning out common ones. Through an interactive user interface, the DeepDict site provides lexical snapshots like the following:
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Illustration 2: DeepDict lexicongram for the noun “voice”

The values in red, in front of the collocations/modifiers/arguments, provide the cooccurrence strength discussed above. Note that a second figure is attached after a colon – the dual logarithm of the absolute occurrence of the depgram in the corpus. In the DeepDict interface this information allows the user to set safety thresholds to weed out relations based on spelling errors or wrong automatic analysis. 


For our CG experiments, the sum of both figures was used, as a compromise between absolute and relative frequencies. In a first round, these relational frequencies were extracted from the DeepDict database for verb-argument pairs and adjective-noun pairs. Using the data as is, however, would be a suboptimal option for a Constraint Grammar designed to run on free input, simply because of sparse data  problems – only very common word combinations would be covered from the data, and the infinite tail of the famous Zipf-curve ignored. Therefore, a decision was taken to generalize noun entries into semantic prototype classes, such as <Hprof> (professional human), <tool-cut> (cutting tool), <domain> (domain), <sem-r> (semantic readable). Our parsers use a unified cross-language system of about 160-200 different prototype classes, akin in distinctional depth to the ones used in the European SIMPLE project (http://www.ub.edu/gilcub/SIMPLE/simple.html). Our largest semantic lexica, with about 40.000 nouns covered for each language, are currently those for Danish and Portuguese (Bick 2006), so it is no coincidence that Portuguese was chosen for our experiments with the integration of relational statistics into CG grammar.


After extraction from the DeepDict database, we turned relational frequency information into secondary CG tags similar to those used for local frequencies, adding the function and semantic type of the relation. The verbal tag <fSUBJ/H:62>, for instance, means that the verb's subject (SUBJ) has a 62% likelihood (f) of belonging to the semantic prototype class of human (<H>), while <fACC/cc:23> indicates a 23% likelihood of a “thing”-object (concrete contable, <cc>). For prepositional/pp-arguments (PRP), the wordform of the prepositions is added:

(8a) comprar_V 


<fSUBJ/H:100>


<fACC/cc:23> <fACC/cm:10> <fACC/L:8> <fACC/tool:8> <fACC/amount:4> <fACC/H:4>


<fPRP-a/H:41> <fPRP-a/feat:31> <fPRP-a/time:13> <fPRP-a/unit:13>

(8b) abusar_V 


<fSUBJ/H:62> <fSUBJ/am:21> <fSUBJ/feat:9> <fSUBJ/deverbal:6>


<fACC/H:100>


<fPRP-de/am:35> <fPRP-de/H:17> <fPRP-de/feat:8> <fPRP-de/ac:7>

While verbs were tagged for dependent frequencies, the opposite is more relevant for adjectives, where the semantic type of heads was used, making a distinction between pre-nominal (fpre) and post-nominal (fpost) frequencies, since adjective position in Portuguese is governed by both semantic and pragmatic constraints.

(9a) abismal_ADJ 


<fpre/ac:37> <fpre/deverbal:37> <fpre/am:21>


<fpost/ac:43> <fpost/am:15>

 <fpost/L:14> <fpost/deverbal:13> <fpost/percep:8> <fpost/cc:4>

(9b) inglês_ADJ 


<fpost/H:23> <fpost/org:22> <fpost/sem:9> <fpost/domain:6> <fpost/ling:5>

The above-mentioned concern about sparse statistical data, caused by the huge number of possible 2-word depgrams as opposed to local frequencies, as well as the need to prevent a numerical tag explosion in the face of the need for “discrete unification” (i.e. the fact that the current compiler does not yet handle regular expressions in tag set unification) has led us to further restrict the number of semantic classes, eliminating subclasses (marked by a hyphen, or by lower case additions to upper case tags). Thus, in our relational frequency tags, <tool-cut> becomes 'tool', and both <Hprof> and <Hideo> (ideological human, follower) become simply 'H'. It is, of course, quite possible that more fine-grained distinctions would further improve parser performance, and future research should examine this possibility once formal compiler changes and the advent of bigger corpora allow the necessary experiments.

3.4. More expressive power for CG rules

CG rules can be compared to very elaborate string manipulation operations, such as pattern matches and substitutions with regular expressions in a programming language like Perl. Instead of letters or letter combinations, however, CG rules add, remove or select morphological, syntactic, semantic or other readings. Rules may use context conditions of arbitrary distance and complexity, i.e. Other words, or their tags, anywhere in the sentence, or – in the case of CG3 – in an arbitrarily defined multi-sentence window. The expressive power of CG rules varies according to the compiler dialect used, and some implementations have been built with specific commercial or research purposes in mind. GrammarSoft's open source CG3 (http://beta.visl.sdu.dk/cg3.html), the newest and most expressive variant, goes beyond merely topological contexts, allowing the addition and use of dependency and other, named, relational links. It also strives to integrate linguistic concepts central to competing  parsing approaches, based on descriptively different linguistic approaches. Thus, it is possible to unify variables for feature-attribute pairs, like in AGFL, or define special templates to grasp the concept of constituents as used in generative rewriting rules. 


Like these other additions to the CG3 compiler formalism, our introduction of numerical tags and mathematical comparison operators, necessary for the use of statistical information, represents a major break with CG tradition: Ordinarily, all CG tags are regarded as stable, discrete features, and even the possibility of referring to lemmas or word forms using regular expressions was only introduced recently, in CG3. In a tradition annotation environment of discrete tags, statistical tags would have to be expressed (and referenced!) in myriad steps, e.g. <f1>, <f2>, … <f99>, <f100> for a percentage scale – an unthinkable complication for the rule-writing grammarian. In our new proposal, numerical tags are introduced as a combination of an alphanumerical identifier and a numerical value, separated by a colon:


<f:340> (absolute frequency of 340)


<error:34> (error likelihood of 34%)


<size:50> (ordinary size of the object denoted: 50 cm)

The first example would lend itself to a simple use of frequency thresholds, while the second could be used in a spell/grammar-checker feeding probabilistic data to a pattern-matching CG module. The third, finally, provides “knowledge of the world” to a CG-based information extractor or reasoning system.


To match such information in rule contexts, we allow what could be called “comparative reference” to numerical tags. For instance, a rule can refer to the numerical tag type 'error', setting a maximum threshold for the rule's operation (e.g. REMOVE, ADD or SELECT) to be allowed. Thus, the condition <error<25> means “error likelihood below 24%”, and could be used in isolation, or in combination with a positional, lemma- or other tag-based condition (such as P=plural, ADJ=adjective, etc.). The following comparative operators are included in our present compiler implementation:


< (less than), > (greater than), <= (less or equal), >= (greater or equal)


=MAX (highest value in the readings cohort), =MIN (lowest value in the cohort)

3.5. CG rules for local frequencies

With the exception of finite state implementations, most CG implementations apply the individual rules in a deterministic and sequential way. In this process, information cannot ordinarily be recovered once the relevant tag has been removed (though it can be traced), and the annotation process can thus be seen as iterative and irreversible rounds of (a) adding possible tags, then (b) disambiguating them in a reductionist fashion. The method ensures a high degree of robustness, which is addressed in various ways:

1. by not allowing rules to remove the last reading/tag of a given class, so that – even with grammatically incorrect input - contextual restraints cannot declare a sentence “not part of my idiolect” - thus ensuring that any input sentence will receive a parse. 

2. by allowing the addition or substitution of heuristic tags for unknown words 

3. by running rules in batches, with safe rules before heuristic ones

4. by adding specific NOT or NEGATE contexts to rules found to cause annotation errors in corpus test runs

Statistical information can be used to potentiate both (3) and (4). At a local level, minimum frequencies, if necessary conditioned on PoS or other tags, can be used to generalize NOT contexts for rare exceptions. At a global level, progressively lower frequency thresholds can be used to cull rare readings between CG rule batches, matching the desired heuristicity of the subsequent rule batch.


The illustration below explains the modular architecture of a full CG system, with progressive rounds of mapping (adding possible tags, red) and disambiguation (yellow). External modules are in green, e.g. a morphological analyzer (multitagger) or a decision tree tagger (DTT) to provide morphological input, or Dependency (Dep.) or Phrase Structure Grammars (PSG) to further process syntactic output. 
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Illustration 3: Constraint Grammar flow chart

Our present statistical focus has been on morphological disambiguation (large yellow diamond), but a similar method (automatic corpus annotation followed by statistics extraction) could be employed at other levels, such as polysemy resolution or semantic role tagging.


The following rule is an example of a word class- and context-conditioned rule, which can be used relatively early in the progression towards more and more heuristic rules: 

(10)
REMOVE (<fr<10> N) (0 (<fr>60> V)) (1 N) ;

The rule will remove noun readings with a lower-than-10% probability in the presence of a higher-than-60% probability of a verb reading, if there is another noun candidate immediately to the right.


In the other end of the spectrum, base-line rules can perform a context-free choice in favour of the most likely reading in a given cohort:

(11a)
SELECT (<fr=MAX>)

(11b)
REMOVE (<fr=MIN>) 

The second method is more cautious than the first, since it will remove only the least likely reading, while the first removes all readings but the most likely one, i.e. potentially a whole row of readings. Furthermore, the first will also remove readings with no <fr:>-value given, while the second won't touch them.


At heuristicity level 1, rules need safe contexts and will therefore be more complex than at higher heuristicity levels. The following examples illustrate the difference:

Heuristicity level 1:


(12a) 
REMOVE (N P) (0 V-TENSE + (<fr>20>) (*-1 N/PRON-NOM BARRIER NON-ADV LINK NOT 0 DET OR ADJ OR <first> LINK *-1 KC BARIER NON-PRE-N/ADV LINK -1 KOMMA OR >>>) (*1C <<< OR CLB-WORD BARRIER V-TENSE) ;

discard plural noun reading in the presence of a tensed verb reading, if the verb is not too rare (> 20% likelihood), if there is a good candidate for a clause-initial np to the left (*-1), and no other tensed verb candidate in the same clause to the right (*1)

Heuristicity level 5:


(12b) 
REMOVE VFIN + (<fr<50>) - <vq> (*1C VFIN BARRIER CLB OR KC) ;


no 2 ordinary finite verbs in a row: remove the first of two verbs, if there is no clause boundary (CLB) or coordinator (KC) in between, and if verb-likelihood is below 50%, and no risk of a clause-governing cognitive verb (<vq>).

(12c) 
REMOVE (<fr<30> PCP1) (0 (<fr>=40> ADJ) ;

participle-adjective ambiguity (e.g. 'stunning'): 

A systematic way of making use of tag likelyhoods, is step-wise relaxation of frequency conditions, alternating with the above-mentioned ordinary rule batches. Thus, each heuristicity level will have its own version of the following culling rule(s).

Heuristicity level 3:



(13a)
REMOVE (<fr<10>) (0 (<fr>=70>) LINK 0 <f<100>)) .... ;

Heuristicity level 4:



(13b)
REMOVE (<fr<25>) (0 (<fr>=60>) LINK 0 <f<1000>)) .... ;

Heuristicity level 5 :



(13c)
SELECT (<f>0>) ; 

The first 2 rules progressively raise the removal threshold (from 10% to 25%). A minimum frequency for the best alternative reading is also included to avoid cases where 3, 4 or more reading share middle range frequencies. This minimum alternative threshold is correspondingly lowered for each new level (here from 70 to 60). Note that both rules also contain a condition on absolute frequency (<f:>), in order to avoid too-early settlement of some closed-class ambiguities (e.g. conjunction vs. Pronoun). The third rule simply favours readings with support in the corpus (fr>0) over those without. It is a typical late-stage rule, and In its heuristicity it resembles the MAX/MIN rules discussed above.

3.6. CG rules for relational frequencies

In the same way, local frequencies were used at the morphological/PoS level in the English grammar, the semantic-relational frequencies introduced in our Portuguese grammar could be used for syntactic function disambiguation and dependency, as safety valves for rule contexts or heuristic tag selection. However, implementing such rules for all different verb types and semantic classes, constitutes a major work effort, far beyond the one needed for the considerably fewer tag classes targeted at the morphological level by local frequencies.


Therefore, we decided to start by using relational frequency tags to boost the coverage of existing long-distance, global-context rules exploiting ±human features and selection restrictions to disambiguate subject/object function and adnominal attachment of adjectives. The latter actually supports the former, since a ±human feature on an adjective can be propagated to its head noun once a safe dependency relation has been established between the two. 


The current CG grammars implement the ±human feature as set definitions, drawing on three types of information

· lexicon-encoded ±human tags: <vH> (verb subcategorizing for a human subject), <vN> (verb subcategorizing for a non-human subject), <jH> (adjective with likely human or semantical head), <jN> (adjective with non-human head)

· lists of lemma base forms encoded in the grammar file itself

· valency or other tags indirectly implying semantic traits

These options may be combined in an actual set definition, as in the following examples of verb sets subcategorizing for non-hum (V-NON-HUM) and human subjects (V-HUM), respectively:

(14)
LIST V-NON-HUM = <vN> “explodir” …. ;


LIST V-HUM = <vH> <+interr> <vq> <speak>  <como^vta> “pensar” …. ;

Here, <+interr> (interrogative), <vq> (que/that object-clause) and <como^vta> (e.g. ver como / regard as) indirectly indicate the +human subject restriction, while “explodir” (explode) and “pensar” (think) are member of much longer lemma lists. Even long hand-crafted lemma list, however, will not achieve the broad coverage a fully lexicon-implemented <vH> or <vN> tag would provide. Therefore, we dynamically add these tags on all verbs in running parser input, drawing on the new relational frequency tags, with a position-0 condition (i.e. local / same token condition):

(15) Subjects:

· SUBSTITUTE (V) (<vH> V) TARGET (V) 


((0 (<fSUBJ/H>70>)) OR (0 (<fSUBJ/H>30>) LINK 0 (<fSUBJ/org>20>))) ;

· SUBSTITUTE (V) (<vN> V) TARGET (V) 


(0 (<fSUBJ/H<20>)) ;

(16) Direct objects:

· SUBSTITUTE (V) (<+ACC-hum> V) TARGET (V) 


((0 (<fACC/H>70>)) OR (0 (<fACC/H>30>) LINK 0 (<fACC/org>20>))) ;

· SUBSTITUTE (V) (<+ACC-non-hum> V) TARGET (V) (0 (<fACC/H<20>)) ;

For adjectives, the ±human feature is added in a similar fashion, using the corresponding relational frequencies for this word class:

(17)

· SUBSTITUTE (ADJ) (<jh> ADJ) TARGET (ADJ) (0 @>N) (0 (<fpre/H>70>)) ;

· SUBSTITUTE (ADJ) (<jh> ADJ) TARGET (ADJ) (0 @N<) (0 (<fpost/H>70>)) ;

4. Evaluation

4.1. A tailor-made evaluation tool for CG

In the absence of standardized evaluation tools for CG parser output, different research groups have used different methods in the past, ranging from simple output inspection to gold corpus-comparison. One of the oldest methods, introduced by the first Finnish research team around Karlsson in the nineties, is the insertion of a <Correct!> mark on the correct reading line(s) in the analyzer cohort format (i.e. before disambiguation), the presence or absence of which can then be checked after the automatic disambiguation run. The unix 'diff' command can also be used, even without explicit marking, as a base for secondary evaluation and counting scripts, comparing a revised version of the output (the “gold corpus”) with the original output. There are problems with all of these, however: On the one hand, the <Correct!> marking method is designed for morphological cohorts, and difficult to use with higher-level annotation with different feature-attribute alternatives on one and the same line. On the other hand, diff-based scripts depend on a high degree of file similarity, and small differences in tag order or tokenization may prevent diff from working as intended, reporting more file differences than there are actual errors, which makes it very difficult to built, and especially, reuse a robust gold standard reference annotation – not least for systems under constant development, where changes in tag sets, tag order, lexicon-dependent tokenization etc. may occur at any time.


Having first-hand experience with most of these problems, the author designed and programmed a new CG evaluation tool from scratch for the current project. The tool is called eval_cg and strives to be as robust as possible with regard to input formats, while allowing to evaluate different levels of annotation at the same time.


Eval_cg compares to CG annotation files, for instance a gold standard revised file on the one hand, and a test run file on the other. However, the same script can also be used to evaluate different test runs against each other, as would be desirable for regression testing, or to compare same-language CG grammars from different research groups with each other. Input may be in VISL dependency format (token and annotation on the same line, cp. examples 1 and 2), or in classical cohort format (example 5). However, ambiguity is only allowed for syntactic function tags  - cohort format will be truncated to one morphological line per cohort (the first).

For each line in both files, the program identifies tags of the following types:

· base form (B) – the lemma tag, in quotes

· part of speech (P) – word class, in upper case

· morphology (M) – inflexional features, in upper case

· syntax (S) – syntactic function, with @-prefix

Tag matches and mismatches are then identified across the two files, independently of tag order, output being a rewritten version of the test file (or simply, file 2) with added difference markers *B, *P, *M and *S, followed by the corresponding line number in the gold file (file 1),  and the correct tag in brackets. For syntactic function tags, where ambiguity is allowed in both gold and test files, many-to-many matching may be required, so a count of matching/non-matching @-tags is also provided:

(18)
Slavonic
 [Slavonic] <ling> N S NOM @N<PRED @P<  *S474(1/1:@P<)

Here, the token 'Slavonic' matched line 474 in the gold corpus, matching its prepositional argument reading (@P<), but also exhibiting an unresolved ambiguity, with the spurious postnominal predicative (@N<PRED) reading.


Because tokenization may differ between the files, not least (a) because named entity recognition  (NER), numerical expressions (e.g. complex dates) and some other multi-word expressions (MWE) are handled as part of the annotation process, thus fusing 2 or more tokens into one, (b) because manual editing in the gold file may change tags or separators unintendedly, or (c) because punctuation may or may not have been recognized as part of an abbreviation – to name just a few of the more incalcitrant problems – it is by no means trivial to align gold file and test file. Eval_cg achieves some alignment tolerance by checking for case (upper/lower) and separator (space, = and _) variants, and by maintaining a rolling ±5 token window, with a constantly computed and calibratedd “kiss point” (= currently focused pair of assumed matching line id's in the two files), so token mismatches can be repaired (case mismatches), multi-aligned (1-to-many, many-to-1) or at least skipped precisely, for later rematching of the following tokens. Tokenization mismatches will be marked in the rewritten output file 2 as *T_missing, *T_extra and *T_mismatch, followed by the corresponding line number in file 1, in the case of many-to-many mismatches also with an n/m line rematch indicator, where n and m are the respective line numbers of the point where alignment was reestablished. Where a MWE in one file is found to match 2 or more separate tokens in the test file, MWE tags are compared to the last (first) of the separate tokens. Meta tag lines (e.g sentence id, headline markers etc.) may or may not be used during alignment, depending on a command line flag, but – if present in both files -will generally improve alignment.


Finally, at the end of the rewritten file2, the evaluation script will append file difference measures in the form of an evaluation metrics, providing recall, precision and F-score for the different annotation levels.

4.2. Test data and results 

To evaluate the performance of our statistics-enriched version of the English CG, we constructed two revised gold-standard annotations of (a) randomized Wikipedia sentences and (b) Leipzig Wortschatz sentences (Quasthoff et al. 2006) from the business domain, the former with 4,371 tokens (3,526 function-carrying words), the latter with 4,277 tokens (3,508 function-carrying words). Wikipedia sentences were filtered to identify sentence-like chunks and to weed out e-mail addresses, lists etc, then randomized by selecting every 200th sentence. The Leipzig collection is in itself a randomized corpus, and thus did not need randomization. 

We then used eval_cg to test the performance of the modified grammar as opposed to that of the origiunal grammar. Table 1 shows the results, with each cell combining the figures for Wikipedia (top) and the Leipzig collection (bottom). A marked increase in F-scores (weighted recall/precision) was achieved for both text types.

	
	traditional CG
	CG with probabilistics
	better : worse
	change in F-scores

(relative)

	syntactic function
	91.1

90.8
	93.4

93.4
	119 : 38 (75.8%)

123 : 35 (77.8%)
	2.3 (2.5)

2.6 (2.9)

	PoS
	96.9

96.9
	97.9

98.2
	46 : 11 (80.7%)

52 : 6 (89.7%)
	1.0 (1.0)

1.3 (1.3)

	morphology
	96.6

96.0
	97.8

97.9
	-

-
	1.2 (1.2)

1.9 (2.0)

	lemma (baseform)
	98.1

96.9
	98.7

97.7
	26 : 4 (86.7%)

34 : 6 (85.0%)
	0.6 (0,6)

0.8 (0,8)


Table 2: Performance effects of adding proabilistic rules

Though the new rules all addressed morphological/PoS disambiguation, the syntactic function gain (91.1 -> 93.4 and 90.8 -> 93.4 for Wikipedia and Leipzig collection, respectively) was about twice as big as the PoS gain (96.9 -> 97.9 and 96.9 -> 98.2, respectively), reflecting the fact that PoS errors, not least V/N errors, will typically mess up clause structure recognition,  causing several syntactic errors for each PoS error.

Finally, eval_cg was used to compare the two live annotations directly against each other, with the original EngGram annotation playing the role of gold standard, in order to pinpoint individual differences. A detailed inspection of such annotation differences revealed that of all changes, about 80% were for the better, while 20% introduced new errors, suggesting an added potential for improvement by crafting more specific – probabilistic or non-probabilistic - rule contexts for these cases.

5. Conclusions and outlook

We have shown that the integration of statistical, corpus-derived distributional information into Constraint Grammar rules is both feasible and worthwhile. Thus, 80% of all resulting annotation changes were for the better, and error rates for a modified English grammar fell from 3% to 2% for PoS, and from 9% to 7% for syntactic function, even though the statistical data were gathered from an automatically CG-annotated corpus in a bootstrapping fashion. It can be assumed, that results could be further improved by reiterating corpus annotation and frequency extraction with ever-better grammars, in order to exploit this bootstrapping effect to the full.


Also, it would be tempting to attempt further integration of statistical methods. First of all,  additional frequency data could be made accessible to CG rules. Thus, in an ongoing experiment, we have generated likelihoods for the semantic class of verb arguments, allowing CG rules to unify semantic features such as ±human between the verb and its subject or objects. Other potential areas for added frequency data are the following: 

· frequencies for syntactic tags, given a certain PoS tag

· frequencies for semantic prototypes and semantic roles

· n-gram frequencies for any of the above, so local-context rules could be supported directly by statistical information

· pp-attachment likelihood (prepositional phrases as either postnominal or adverbial)

Second, given the importance of rule ordering in a procedural approach like CG, with successive rather than simultaneous disambiguation, it is obvious that care must be taken in the design of a CG grammar not to remove tags too early or too lightly, in the face of viable alternatives. Already, rule ordering is an integral part of our grammar design, as can be seen from the heuristicity batches and progressive statistical constraint relaxations described in this paper. 


However, all of these ordering decisions were taken “by hand”, and based on human linguistic intuition. It is more than likely that both rule ordering and statistical thresholds could be further optimized by using a higher degree of granularity (more distinct rule sections, smaller statistical threshold relaxation steps), and – in particular – by using  machine learning techniques to achieve an individual rule ordering, optimized and/or threshold relaxation. The feasibility of CG improvement through machine-learned rule ordering was demonstrated by Lager (2001) for automatically “mutating” local CG rules, and it is highly likely that similar improvements could be achieved for human-written rules.


 To perform such an automatic ordering experiment, a larger gold standard corpus, with reasonable coverage of both lexicon and syntactic-structural variation, would be needed, and future research would greatly benefit from the existence of such a corpus, and a first step towards such a resource could be to investigate if non-CG corpora could be adapted for this purpose, or if semi-automatic correction mechanisms could be developed to turn a raw CG-annotated corpus into a gold standard. 


Still, even without further optimization of rule ordering, the statistical grammar additions implemented for English and described in this paper, did improve performance considerably. Therefore, future work should include making similar changes in CG grammars for other languages, not least our own parsers covering the Romance and Germanic languages, for three of which this process is ongoing at the time of writing.
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