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Abstract 
 
The evaluation of grammar inference systems is clearly a non-trivial task, as it is possible to have more 
than one correct grammar for a given language.  The ‘looks good to me’ approach, carried out by 
computational linguists analysing their own grammar inference system results, has prevailed for many 
years.  This paper explores why this method has been so popular, in terms of its strengths, and also why 
it is no longer adequate as a reliable means to measuring performance.  Corpus based methods, that can 
be performed automatically, are investigated to see how they can meet the needs of this difficult 
problem.   
 
1  Introduction 
 
In the past few years, the Natural Language Learning community have produced systems targeted at 
the complex task of Grammar Inference (GI): automatically inferring or learning grammatical 
descriptions of a language from a corpus of language examples.  A low-level GI task is to group or 
cluster words into tentative categories according to their distributional behaviour, e.g., Atwell and 
Drakos (1987), Hughes and Atwell (1994) and Roberts (2002).  A more ambitious aim of GI is to 
propose grammatical phrase structure; a number of mature solutions have emerged, for example, GraSp 
(Henrichsen 2002), CLL (Watkinson and Manandhar 2001a), ABL (van Zaanen 2001) and EMILE 
(Adriaans 1992).  All systems mentioned aim to be unsupervised, and thus can only rely on raw 
(unlabelled) text for their learning process.  Results from these systems are promising – a variety of 
linguistic phenomena are induced. 
 
Despite the advances in this field, the issue of thorough evaluation has been poorly address.  Evaluation 
within Natural Language Processing tasks in general is problematic, not least because there is no 
obvious single correct output to measure against.  For example, for PoS-tagging and parsing, different 
linguists advocate different tagsets and parsing schemes, making it difficult to compare accuracy 
metrics (Atwell 1996; Atwell et al. 2000).  Ambiguity poses a similar threat in GI: the basic problem is 
given a training corpus, there is no single correct grammar that represents it.  In the majority of systems, 
a ‘looks good to me’ approach has been used: success is illustrated by presenting some grammar 
classifications or structures proposed by the system which appeal to the linguist’s intuition. 
 
There is a need to develop methods for consistent evaluation of GI systems.  Without a reliable way of 
determining the performance of such systems, it will become increasingly difficult to assess how 
competently they are doing the task they are supposed to do.  Nor will it be trivial to compare two or 
more systems, which would be very valuable in deciding which techniques and algorithms work best 
for Natural Language Learning. 
 
This paper investigates the feasibility of harnessing corpora that can be used to develop a standard 
mechanism (which aims to be reliable and accurate) for evaluating GI systems in the future.  The next 
section explores the ‘looks good to me’ approach mentioned earlier to understand why it is so widely 
used, its merits and any shortcomings.  Section three introduces various approaches for evaluating GI.  
A discussion takes place in section four to highlight important issues from the approaches reviewed in 
this paper.  Section five provides brings the paper to a close with a conclusion. 
 
 
2  Looks good to me 
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The success of this approach is essentially its apparent simplicity.  A system performs its GI procedures 
on a piece of unstructured text, and its resulting grammar can be analysed by a computational linguist, 
generally the computational linguist who built the Grammar Inference system under scrutiny.  A 
qualitative evaluation takes place based on the linguistic intuitions of the evaluator, by highlighting 
features or structures in the learner output which look “good”, or reminiscent of structures in a 
recognised linguistic theory.  Of course, the apparent simplicity is due to the fact that a linguist 
possesses the required skills and experience to easily deduce whether the grammar in question contains 
a plausible structure.  Researchers who came into the field of GI from a computing/AI/machine 
learning background are less likely to be as proficient at evaluating grammars using this approach. 
 
‘Looks good to me’ is an important method of evaluation, and certainly should not be discredited just 
due to its lack of automation.  Verification of a system carried out independently by one or more 
linguists would provide – in most cases – a more reliable measure of performance.  It is also arguably 
the most resource efficient, since it can be evaluated on different languages without the need of 
structured corpora (van Zaanen 2001).  Examples of this method in use can be found in. (Finch and 
Chater 1992; Losee 1996; Vervoort 2000; Henrichsen 2002). 
 
However, the method has many disadvantages.  Evaluation of this nature is mainly conducted by the 
developer of the system rather than someone independent to the work.  Thus, there is a high chance of 
bias whereby the systems successes are highlighted and shortcomings are glossed over, making it 
almost impossible to gain an accurate picture of system performance.  Even without any bias, the 
process is time consuming and would rely on the subjectivity of the expert(s), and may also be prone to 
unknown external factors that can affect humans.  And finally, it does not offer the facility for 
comparing different systems which would be of great benefit. 
 
 
3  Automatic evaluation 
 
Ideally, the process of evaluation should be performed automatically which will save on time and on 
the necessity of an expert linguist in the chosen language.  This section focuses on methods that 
harness corpora for this purpose. 
 
 
3.1  ‘Gold standard’ treebank 
 
This method is currently the most common to be adopted.  It works by extracting the original natural 
language sentences from an existing treebank (the ‘gold standard’), and using it as input to a given GI 
system.  The structured sentences produced by the GI system are then compared to the structure found 
in the original treebank.  Common metrics include recall (measures the completeness of the learned 
grammar) and precision (measures the correctness of the learned grammar) that can be calculated to 
give an objective measure of system performance.  This method has been used in (Brill 1993; Déjean 
2000; van Zaanen 2001) 
 
Although on the surface, this method appears sound, and simple to implement, there are in fact many 
issues that cause it to be insufficient for it to be reliable and accurate.   Treebanks are expensive (both 
in time and money) to create, and so they are not in plentiful supply.  The material within also tends to 
be exclusive to a particular domain, e.g., the ATIS treebank consists of sentences on questions and 
imperatives on air traffic, or the Penn Treebank is taken mostly from articles in the Wall Street Journal.  
If a GI system is not designed to learn from raw text of the same genre or subject,, then it is not an ideal 
candidate for a ‘gold standard’.  The way in which the treebank has been structured poses a problem.  
Just because it has been labelled the ‘gold standard’ does not necessarily mean that anything that 
differs is wrong – it may simply be different, but equally correct.  However, such differences will 
clearly affect the measure of the systems’ performance.  It does also beg the question about whether 
certain treebanks are credible enough to be used for the purposes of evaluation.  One must be confident 
that the quality and validity of an annotated is sufficiently high, otherwise, it is pointless evaluating 
systems with corpora that contain errors or are not well structured. 
 
On a slightly more technical level, a large step to overcome is the likely discrepancy between the actual 
annotation schemes of the GI system to be evaluated and the ‘gold standard’.  For example, an 
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increasingly common grammar being employed within GI is the categorial grammar  (Ajdukiewicz 
1935).  However, there is no corresponding treebank whose annotation formalism uses CG, which 
means the only useful measurements that can be acquired from this mismatch are metrics such as 
crossing-brackets, but so much information is wasted.  Therefore, a system of translation is required to 
either convert the original treebank to the annotation scheme used by the GI system, or the other way 
around, in order for a more precise comparison to commence.. This was the tactic taken by Watkinson 
and Manandhar (2001b) in their evaluation of CLL, whereby they set about establishing a ‘gold 
standard’ by translating the Penn Treebank annotation scheme into one using categorial grammar 
markup . 
 
 
3.2  Multi-annotated corpora 
 
To overcome some of the main disadvantages of the ‘gold standard’ approach, the next logical step is 
to develop a multi-annotated corpus, as exemplified in Atwell et al. (2000).  The premise is that the 
same corpus is parsed by a variety of systems, rather than merely one as all common treebanks are.  
Providing all parses are trusted to be correct, then upon evaluation of a GI system, it is less likely to be 
penalised just because it produces different but equally correct parses, because it is being compared to a 
variety of such parses. 
 
This step should make the evaluation fairer, however, it does add a new set of complexities.  Not least 
due to the aforementioned annotation translation problem, which multiplies for each unique scheme 
used by the various parsers.  Ideally, the same annotation would be used for all parses within the 
treebank – the ‘gold standard’ annotation scheme.  But this too is fraught with difficulties, especially as 
it would be much simpler to accomplish a multi-annotated corpus by using off-the-shelf parsers. 
 
Another issue is how to compare a given parsed sentence to be evaluated with a set of known correct 
parses.  The best case is that a perfect match will be found.  The worse case is no match.  However, for 
many cases, it will be somewhere in between, where a number of partial matches are likely to exist.  A 
best match approach seems logical, i.e., of the candidate parses, the one that is the most similar is the 
one that is then considered for the actual metric calculations. 
 
 
3.3  Multi-corpora 
 
In a similar vein to the above approach, the idea for using more than one corpus is primarily to avoid 
the domain specific issue that was addressed earlier (see section 3.1).  Unlike other corpora, such as the 
Brown or LOB, which span many subjects in different contexts (newspaper articles, novels etc), well 
known treebanks fail to compare in size and variety.  Therefore, this method aims to take advantage of 
smaller individual treebanks and combine into a single, large one.  This would certainly make it fairer 
for general purpose learning systems, although perhaps there is less of a need for more focused systems. 
 
Having said that, an alternative tactic is to treat each of the contributing corpora as individual and each 
as with the normal ‘gold standard’ method.  You would then have a more detailed type of benchmark 
style scoring system, where not only is there an overall performance measure against all the corpora on 
test, it can also be seen on which type of corpora the GI system works best (or worse) on.   
 
Of course, the most thorough approach would be if the smaller treebanks were also multi-annotated as 
described in the previous section.  A ‘multi-multi-annotated corpus’ – if you like – would be a 
magnificent resource. This subtly shifts the aim of evaluation: the result or output is not a single overall 
“accuracy score”, but an exploration of a range of parsing schemes and genres to highlight similarities 
and differences between GI output and a variety of accepted linguistic analysis schemes. Ideally such 
an analysis could be facilitated by a parsed-corpus exploration toolkit: a tool to compare parses in GI 
output and linguist-annotated multi-multi-corpus, and automatically highlight differences. 
 
 
4  Discussion 
 
There does not seem to be a perfect solution to the problem of reliable evaluation, whether it be manual 
or automatic.  GI and parsing is very subjective, and it is unlikely that a method will be created that 
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will satisfy everyone.  However, what should be unanimous is that a system of evaluation needs to exist.  
It may not be perfect, but at least a fair and consistent scheme can be created. 
 
Unfortunately, it is clear that the most thorough automated evaluation approaches could be such a 
burden to developers to implement that they will opt for a simpler approach.  Which is why it may be 
worthwhile to outsource the task of creating the ultimate ‘gold standard’  into a research project within 
its own right.  The creation of a collection of multi-annotated corpora as the central resource, as well as 
a variety of translation interfaces for commonly used annotation schemes, that allow easy comparison 
between output of a GI system and the ‘gold standard’ corpus.  It could be packaged like an evaluation 
toolkit – a black box that is publicly available, easily accessible, and simple to add on as the final phase 
within the pipeline of the GI system. 
 
Alternatively, a multi-multi-annotated corpus could be achieved by getting the GI community – or at 
least a group of GI researchers – to work together, each contributing their preferered “target” analysis 
schemes. Sutcliffe et al (1996) describes an analogous evaluation exercise for a range of (non-ML) 
parsers: each researcher was asked to “bring along” their parser analyses of an agreed set of test 
sentences to a joint workshop, and then highlight and discuss successes (and failings) of their systems. 
Perhaps in a future GI workshop, GI researchers could be invited to bring along their preferred 
evaluation treebanks to challenge each other, and to each present both “looks good to me” and 
quantitative evaluations of systems for comparison.      
 
 
5  Conclusion 
 
The ‘looks good to me’ approach, despite the critical slant within this paper, is not an inferior one.  
However, it will not meet the demands for robust NLL evaluation.  Which is why corpus based 
approaches have been presented as the most feasible and reliable way of essentially trying to emulate 
‘looks good to me’ whilst eliminating bias and providing consistency. 
 
There is a great need for researchers within the field to begin addressing accurate evaluation techniques.  
The current ‘gold standard’ method (as described in section 3.1) is too basic and will simply favour GI 
systems that behave similar to the way the ‘gold standard’ treebank was parsed.  Greater flexibility is 
required, and a method like the multi-multi-annotated corpus (see section 3.3) will be a beneficial 
innovation to do just that. Instead of replacing “looks good to me”, the two approaches should be 
combined, so that evaluation is no longer a simple quest for a single “score”, but instead an exploration 
of strengths (and weaknesses) of GI systems.   
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