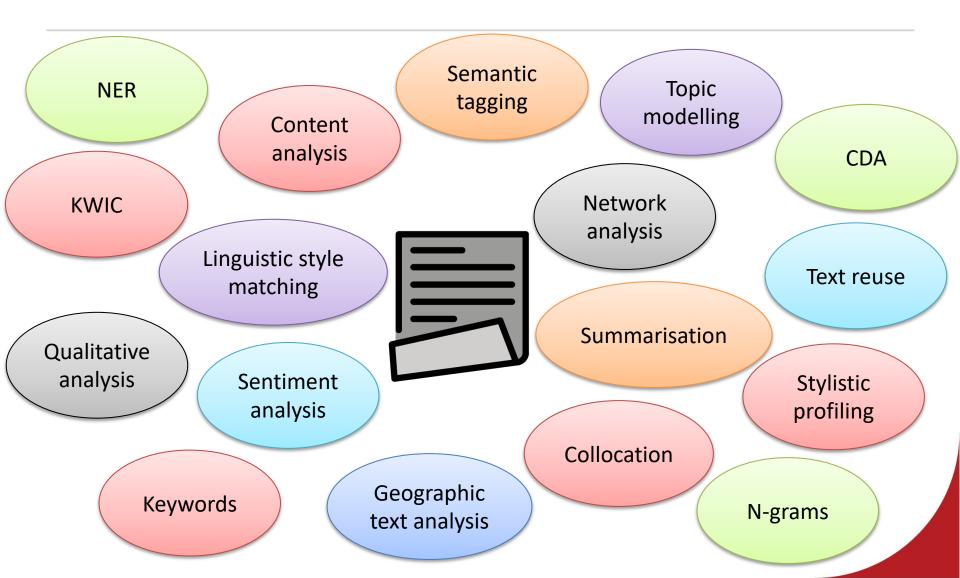


Semantic annotation and key domains

Lancaster Summer Schools in Corpus Linguistics #LancsSS24

27th June 2024

Slides at https://ucrel.lancs.ac.uk/paul/


Prof Paul Rayson Director of UCREL research centre and CLARIN ambassador School of Computing and Communications Lancaster University, UK X @perayson

A myriad of NLP and CL methods ...

A session of three parts

- 1. Semantic annotation (tagging)
 - a little bit computational
- 2. Key semantic tags (key domains)
 - a little bit of statistics
- 3. Wmatrix software
 - Hands on practical

WHAT IS CORPUS ANNOTATION?

Annotation layers

- Pragmatic
- Discourse
- Semantic
- Syntactic
- Lexical
- Morphological
- Phonetic or phonological

- Grammatical (POS tagging)
 - Otherwise known as POS tagging or morphosyntactic annotation: assigning word-class labels for not only major parts of speech (noun, verb, preposition, etc.) but also values defining sub-classes, such as singular and plural nouns, positive, comparative and superlative adjectives, and so on.
 - Origin_NN of_IN state_NN automobile_NN practices_NNS ._. The_DT practice_NN of_IN state-owned_JJ vehicles_NNS for_IN use_NN of_IN employees_NNS on_IN business_NN dates_VVZ back_RP over_IN forty_CD years_NNS ._.

What is Semantic Tagging?

- Semantic field annotation has applications for conceptual or topic tagging:
 - Last_T1.1.1 year_T1.1.1 was_A3+ the Z5 UK_Z2 's Z5 second_N4 warmest_O4.6+++ on_A11.2+ record_A11.2+, PUNC according_Z5 to Z5 provisional_T1.3- data_X2.2 from_Z5 the_Z5 Met_S3.1 Office_I2.1/H1c ._PUNC This_Z8 puts_X2.2- it_Z8 just_A14 behind_X2.2- 2022_N1, PUNC which_Z8 recorded_Q1.2 an_Z5 average_A6.2+ temperature_O4.6 of_Z5 only_A14 0.06C_Z99 higher_N3.7++ ._PUNC
- A3+ = being; A6.2 = comparing; A11.2 = importance; A14 = exclusivisers; H1 = architecture, buildings; I2.1 = business; N1 = numbers; N3.7 = measurement; N4 = linear order; O4.6 = temperature; Q1.2 = documents, writing; S3.1 = relationship; T1.1.1 = Time past; T1.3 = time period; X2.2 = knowledge; Z2 = geographical names; Z5 = grammatical bin; Z8 = pronouns etc; Z99 = unmatched

Multiword expressions: plain sailing?

- Phrasal verbs
 - Stubbed out
- Noun phrases
 - Riding boots
 - Pony nuts
- Proper names
 - United States of America
- Named entities
 - 23rd November 1963
 - British Broadcasting Corporation

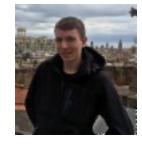
- Multiword prepositions
 - In terms of
 - As soon as
- Idiomatic expressions
 - Spill the beans
 - A pain in the neck

UCREL Semantic Analysis System (USAS)

- Full text tagging, not just selected words (c.f. Diction, LIWC, RID)
- Tagging the coarse-grained sense in context, not just the word
- Not task specific categories
- Flexible category set with hierarchical structure
- Words and multi-word expressions (MWE) e.g. phrasal verbs (stubbed out), noun phrases (riding boots), proper names (United States of America), true idioms (living the life of Riley)
- <u>https://ucrel.lancs.ac.uk/usas/</u>
- Lexicons available free for academic use:
 - <u>https://github.com/UCREL/Multilingual-USAS</u>

The work of many hands ...

- Joint research with
 - Geoffrey Leech
 - Roger Garside
 - Jenny Thomas
 - Andrew Wilson
 - Dawn Archer
 - Scott Piao
 - Sheryl Prentice
 - Andrew Moore
 - Daisy Lal



Semantic fields

- AKA concepts, semantic domains
- 'groups together word senses that are related by virtue of their being connected at some level of generality with the same mental concept'
- Not only synonymy and antonymy but also hypernymy and hyponymy
- E.g. EDUCATION: academic, coaching, coursework, deputy head, exams, PhD, playschool, revision notes, studious, swot, viva

Α	В	С	E
General and abstract terms	The body and the individual	Arts and crafts	Emotion
F	G	Н	I
Food and farming	Government and	Architecture,	Money and
	public	housing and the	commerce in
		home	industry
К	L	М	N
Entertainment,	Life and living things	Movement,	Numbers and
sports and games		location, travel and transport	measurement
0	Р	Q	S
Substances,	Education	Language and	Social actions, states
materials, objects		communication	and processes
and equipment			
т	w	X	Y
Time	World and	Psychological	Science and
	environment	actions, states and	technology
		processes	
Z			
Names and			
grammar			

Lexical resources for English

- Lexicon of 56,316 items
 - presentation NN1 Q2.2 A8 S1.1.1 K4
- MWE list of 18,971 items
 - travel_NN1 card*_NN* M3/Q1.2
- A small wildcard lexicon
 - *kg NNU N3.5
- Unknown words using WordNet synonym lookup

English Disambiguation methods (1)

- 1. POS tag
 - *spring* noun [season sense] [coil sense]
 - *spring* verb [jump sense]
- 2. General likelihood ranking for single-word and MWE tags
 - green referring to [colour] is generally more frequent than green meaning [inexperienced]
- 3. Overlapping MWE resolution
 - Heuristics applied: semantic MWEs override single word tagging, length and span of MWE also significant

English Disambiguation methods (2)

- 4. Domain of discourse
 - adjective battered
 - [Violence] (e.g. battered person)
 - [Judgement of Appearance] (e.g. battered car)
 - [Food] (e.g. battered cod)
- 5. Text-based disambiguation
 - one sense per text
- 6. Template rules
 - Auxiliary verbs (be/do/have)
 - account of NP [narrative]
 - balance of xxx account [financial]

Evaluation (English data)

- Hand tagged test corpus of 124,839 words
- Error rate of 8.95%
- Ambiguity ratio 47.73%
- Reduced to 17.06% by disambiguation
- Not all ambiguity is resolved, but 1st choice tag selection gives 91% accuracy.

KEY SEMANTIC DOMAINS AND FURTHER APPLICATIONS

Шm

	Word	LibDem manifesto Frequency Rel. freq.	Labour manifesto Frequency Rel. freq.	O/U-use LL	Keywords	
Umatrix	1 liberal 2 would 3 democrats 4 our 5 labour 6 is 7 which 8 now 9 1997 10 gren 11 environmental 12 establish 13 since	47 0.23 70 0.34 40 0.20 76 0.37 33 0.16 119 0.38 92 0.45 8 0.04 4 0.02 26 0.13 34 0.17 33 34 0.17 2	0 0.00 10 0.04 0 0.00 272 0.97 152 0.54 330 1.17 37 0.13 76 0.27 54 0.19 2 0.01 14 0.02 7 0.02 38 0.14	$\begin{array}{cccc} + & 81.41 \\ + & 71.89 \\ + & 69.29 \\ - & 63.22 \\ - & 49.56 \\ + & 45.13 \\ - & 47.04 \\ + & 45.13 \\ - & 43.97 \\ - & 36.76 \\ + & 32.81 \\ + & 30.98 \\ + & 29.06 \\ - & 29.06 \end{array}$	La Ur	anca nive
Text	14 ten.year 15 also 16 Governments 17 britains 18 long_term 19 new 20 's	0 000 88 0.43 15 0.07 15 0.07 15 0.07 57 0.28 29 0.14	25 0.09 50 0.18 0 0.00 0 0.00 0 0.00 165 0.59 106 0.38	. 27 39 + 26 30 + 25 58 + 25 98 + 25 98 - 25 91 - 25 46	Text or reference corpus	
	the 351 of 243		-	the 351 of 243		
Word frequency list	a 221 and 153 to 139 in 134 is 123 be 83 for 81 phrase 69 that 67 which 66 are 64 by 60 words 57 x 53 as 50 not 48 or 44			and 221 and 153 to 139 to 134 is 123 be 83 for 81 be 69 chtat 67 which 66 are 64 by 60 words 57 sas 50 not 48 or 46 or 46	Word frequency	list

versity

Significance and effect size

- Log-likelihood (LL) Wizard online at:
 - <u>https://ucrel.lancs.ac.uk/llwizard.html</u>
- Spreadsheet and code also available for download
 <u>https://github.com/UCREL/SigEff</u>
- Very important to consider dispersion and effect size measures (depending on your corpus) – included in Wmatrix CrossTab feature and keyness measures
 - See the work of Hardie, Gabrielatos, Brezina and others
 - Rayson and Potts (2021)

Figure 1: keywords in LibDem 2010 ¹ manifesto

2020 2050 affordable allow banking banks believe better Britain budget businesses carbon change child climate create crime cut deficit democrats developing_countries economy education emissions energy ensure environment establish EU every fair fairness financial for funding future give global government health help homes improve increase infrastructure insulate introduce jobs justice liberal Incal_authorities long-term manifesto money mutuals need NHS our over_time paid pay people politics polluting power protect public reduce reducing reform reforming renewable replace restore review Savings schools scrap seek services spending state_pension such_as so that support sustainability sustainable system target targets tax taxes to UK UN Unfair We will

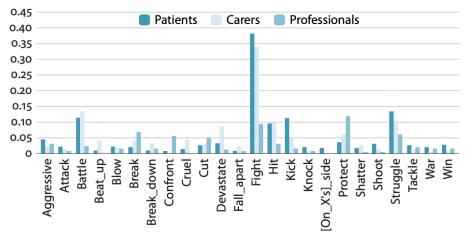
Figure 2: key domains (semantic fields) in LibDem 2010 manifesto

Able/intelligent Alive Allowed Attentive Business Business:_Generally Chance,_luck Change Cheap Confident Constraint Crime Danger Degree Deserving Education_in_general Entire;_maximum Ethical Ethical Evaluation: Good Evaluation: _Good Evaluation: _Authentic Exceed; _waste Expensive Expensive General_actions_/_making Getting_and_giving;_possession Giving Government Green_issues Health_and_disease Helping Hindering Important Interested/excited/energetic Inclusion Law and order Lawful Location and direction Long tall and wide Medicines and Money_and_pa Law_and_order: law, prison(s, ers), loopholes, security, police (force, officer, station, services) ... Money:_Affluence Money:_Lack Money:_Affluence NO_CONSTRAINT No_obligation_or_necessity Other_proper_names Participating People Places Politics Putting_pulling_pushing_transporting Quantities:_little Quantities: little Quantities:_many/much Relationship Residence Safe Safe Science_and_technology_in_general Social_Actions, States_And_Processes Strong_obligation_or_necessity Success The_Media The_Universe Time_period:_long Time: Future Time:_Ending Time:_New_and_young Time:_Beginning Time:_Beginning Tough/strong Tough/strong Unethical Wanted Weather Work and employment: Generally

Applications of semantic analysis

100+ papers listed at https://ucrel.lancs.ac.uk/wmatrix/

- Analysis of market research interview transcripts
- Intelligent dictionaries
- Assistance for human translators
- Software Engineering domain understanding
- Language profiling for online child protection
- Actionability
- Corpus stylistics
- Prediction of real-world events from social media
- Metaphor and end-of-life care
- Pattern analysis of the language of psychopaths
- Political discourse analysis
- Describing the language of extremism and counter-extremism
- UK General Election Manifestos (Rayson 2008)

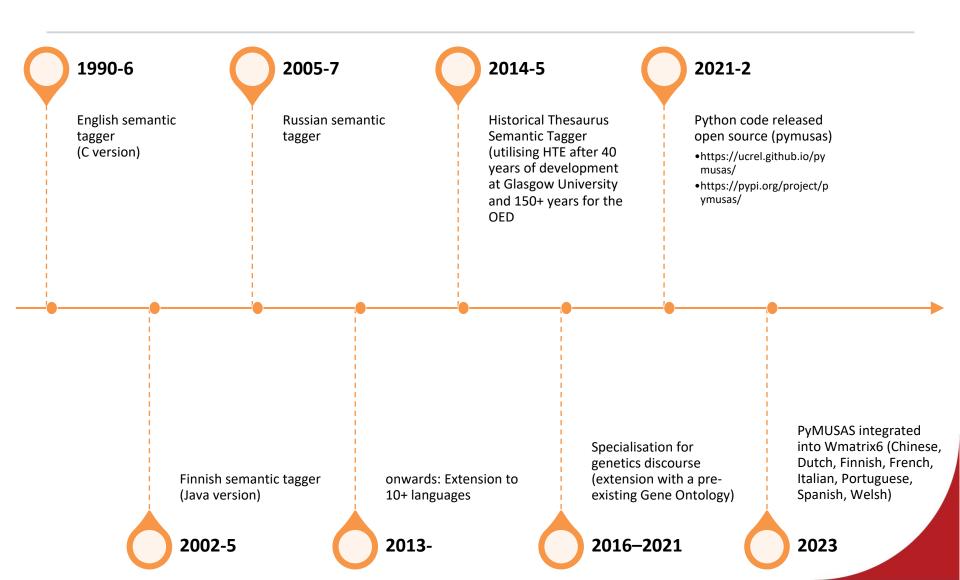


Metaphor, cancer and end of life care (MELC)

- Analysis of metaphorical language used to talk about cancer, dying and death: people 'fight' their cancer, 'win' or 'lose' their 'battle' against it, hope for a positive end to their cancer 'journey', and so on.
- 1.5M word corpus of interviews and online forum posts from patients, carers and healthcare professionals
- Methods: Manual analysis (MIP) and Wmatrix (Semantic analysis & concordancing)
- <u>http://wp.lancs.ac.uk/melc/</u>

G3 Warfare (e.g. *fight* as a verb, *battle*) A1.1.1 General actions, making (e.g. *blast*, *confront*) A1.1.2 Damaging and destroying (e.g. *destroy*, *shatter*) E3– Violent/angry (e.g. *hit*, *attack*) S8+ Helping (e.g. *defend*, *protect*) S8– Hindering (e.g. *fight* as a noun) X8+ Trying hard (e.g. *struggle*)

Figure 3. Relative use of most frequent Violence metaphors by each stakeholder group (per 1,000 tokens): Online forum posts



Qualitative survey analysis: FreeTxt/TestunRhydd project (2022-3)

- Surveys are widely used in many areas of professional practice, e.g. staff development, professional training, product design, testing as well as for many types of hotel, movie and product reviews
- Very little support for bilingual free-text survey and questionnaire data analysis in English and Welsh
- Follow on funding impact project building on CorCenCC project (National Corpus of Contemporary Welsh), we will develop an open access user friendly online interface
- Partners: National Trust Wales, Cadw and National Museum Wales
- <u>https://ucrel.lancs.ac.uk/freetxt/</u>

Recipe for creating a tagger in a new language

- 1. re-evaluate USAS semantic tagset for new language context
- 2. find freely available (open source if possible) POS tagger & lemmatiser
- 3. integrate these into USAS Multilingual software framework (PyMUSAS)
 - a. consider whether other new components are needed e.g. tokeniser or compound tool
- 4. develop single-word semantic lexicon and MWE dictionary
 - a. bilingual dictionary
 - b. parallel aligned corpus (Moses / Giza)
 - c. machine translation / translation memory
 - d. crowdsourcing by non-experts
 - e. named entity recognition and gazetteers
 - f. vector-based approaches
 - g. multi-task & deep learning
 - h. manual checking and editing by experts
- 5. extend disambiguation routines
- 6. release lexicons with CC-BY-NC-SA licence
- 7. release software as REST API and/or open-source licence

PyMUSAS

https://pypi.org/project/pymusas/

- Open source Apache License Version 2.0
- Open resources Creative Commons licence version 4
- Rule based tagger
- Identify and tag Multi Word Expressions (MWE)
- Supports multiple languages through downloadable spaCy pipelines
- Supports Indonesian and Welsh via other POS taggers (TreeTagger for Indonesian and CyTag for Welsh)

Language (BCP 47 language code)	MWE Support	Size
Mandarin Chinese (cmn)	~	1.28MB
Welsh (cy)	~	1.09MB
Spanish, Castilian (es)	V	0.20MB
French (fr)	×	0.08MB
Indonesian (id)	×	0.24MB
Italian (it)	~	0.50MB
Dutch, Flemish (nl)	×	0.15MB
Portuguese (pt)	~	0.27MB

PyMUSAS – Language Support

Each language that we support has a guide on how to semantically tag text for that language:

https://ucrel.github.io/pymusas/ usage/how_to/tag_text

Tag Text

In this guide we are going to show you how to tag text using the PyMUSAS RuleBasedTagger so that you can extract token level USAS semantic tags from the tagged text. The guide is broken down into different languages, for each guide we are going to:

1. Download the relevant pre-configured PyMUSAS RuleBasedTagger spaCy component for the language.

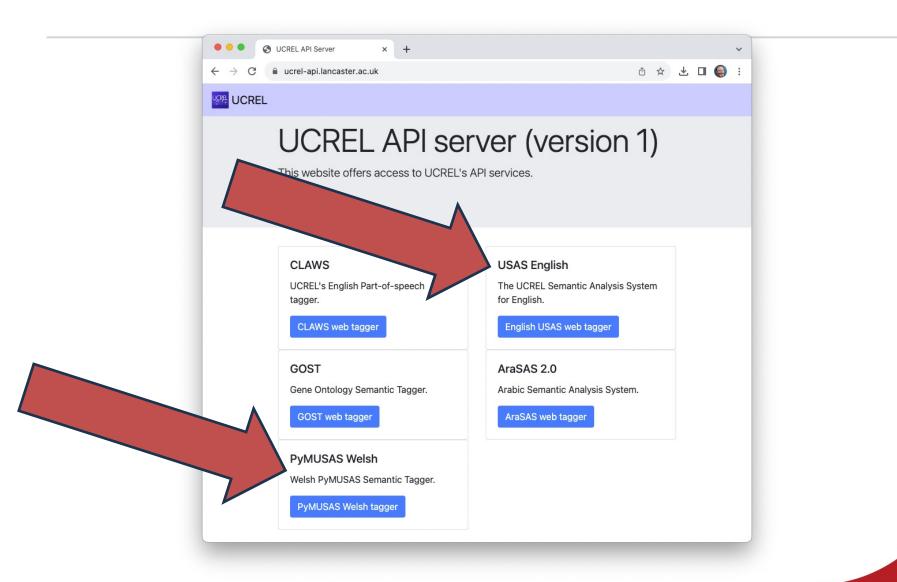
2. Download and use a Natural Language Processing (NLP) pipeline that will tokenise, lemmatise, and Part Of Speech (POS) tag. In most cases this will be a spaCy pipeline. Note that the PyMUSAS <u>RuleBasedTagger</u> only requires at minimum the data to be tokenised but having the lemma and POS tag will improve the accuracy of the tagging of the text.

3. Run the PyMUSAS RuleBasedTagger.

4. Extract token level linguistic information from the tagged text, which will include USAS semantic tags.

5. For Chinese, Italian, Portuguese, Spanish, and Welsh taggers which support Multi Word Expression (MWE) identification and tagging we will show how to extract this information from the tagged text as well.

Chinese


French

Expand

https://ucrel-api.lancaster.ac.uk/

You can also test USAS without a login for Wmatrix

WMATRIX VERSIONS 5 AND 6

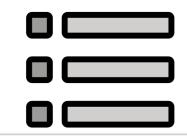
- Web-based (c.f. BNCweb, CQPweb, SketchEngine)
- Dedicated server, Secure HTTPS access
- You can load your own data (English in v5, Multilingual in v6)
- Incorporates main methods in corpus linguistics toolbox
 - frequency lists, concordances, key words, collocations, n-grams
- Adds two levels of linguistic annotation (NLP methods)
 - POS tagging, Semantic field tagging
- Novelty
 - key domain analysis, semantic collocations

Hands on practical

- 2005 UK general election
 - Liberal Democrat party manifesto
 - Labour party manifesto
- 2010 UK general election
 - manifestos for all three main parties
- 2015, 2017, 2019 and 2024 UK general elections
 - manifestos for seven parties
- Aims:
 - To help you understand the basic Wmatrix features and key domains method
 - To give you some awareness of the semantic tagset

Version 5 or version 6?

	Wmatrix5	Wmatrix6
Indexing system	Bespoke from 1990s	SQLite
Folders / Corpus	Single file, up to 1M words	Multiple files (zip), tested up to 30M words
Concordances	Corpus order	Various sort options
N-grams and collocations	NSP and Java code	SQLite
Language	USAS English, Spanish beta	PyMUSAS for Chinese, Dutch, Finnish, French, Italian, Portuguese, Spanish, and Welsh
MWEs	Tagged, displayed in frequency lists	Tagged but not yet displayed in frequency lists
Optional features	Domain and My Tag Wizard, Metaphor features, folder sharing	


Open two web-browser windows or tabs

- All URLs linked from Wmatrix home page:
 <u>https://ucrel.lancs.ac.uk/wmatrix/</u>
- 1. Wmatrix tutorials
 - <u>https://ucrel.lancs.ac.uk/wmatrix/tutorial/</u>
 - <u>https://ucrel.lancs.ac.uk/wmatrix/tutorial6/</u>
- 1. Wmatrix tool:
 - <u>https://ucrel-wmatrix5.lancaster.ac.uk/</u>
 - <u>https://ucrel-wmatrix6.lancaster.ac.uk/</u>
 - Apply for login now if you haven't already got one

- https://ucrel.lancs.ac.uk/wmatrix/tutorial/
- <u>https://ucrel.lancs.ac.uk/wmatrix/tutorial6/</u>
- On your own or in small groups ...
 - Do tutorials A and B (you can either upload the manifesto documents yourself into Wmatrix, or use the ones I made earlier in the corpus library)
 - Do tutorial C (key words, key domains and concordances)
 - For the keen ones amongst you, move on to the other tutorials
 - You can use your own data if you wish
 - Ask questions any time!

Thanks for listening!

• Questions and comments?

• PyMUSAS collaboration for existing and new languages welcome!!

- Contact:
 - Email: p.rayson@lancaster.ac.uk
 - Twitter/X: @perayson

Icons from <u>https://openmoji.org/</u>

- Rayson, P., Archer, D., Piao, S. L., McEnery, T. (2004). The UCREL semantic analysis system. In proceedings of the workshop on Beyond Named Entity Recognition Semantic labelling for NLP tasks in association with 4th International Conference on Language Resources and Evaluation (LREC 2004), 25th May 2004, Lisbon, Portugal, pp. 7-12.
 - <u>http://www.lancaster.ac.uk/staff/rayson/publications/usas_lrec04ws.pdf</u>
- Piao, S., Bianchi, F., Dayrell, C., D'Egidio, A. and Rayson, P. (2015). Development of the multilingual semantic annotation system. In proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics - Human Language Technologies (NAACL HLT 2015), Denver, Colorado, United States, pp. 1268-1274.
 - <u>http://aclweb.org/anthology/N/N15/N15-1137.pdf</u>

- Piao, Scott Songlin; Rayson, Paul; Archer, Dawn; Bianchi, Francesca; Dayrell Gomes Da Costa, Maria Carmen; El-Haj, Mahmoud; Jiménez, Ricardo-María; Knight, Dawn; Křen, Michal; Lofberg, Laura; Nawab, Rao Muhammad Adeel; Shafi, Jawad; Teh, Phoey Lee; Mudraya, Olga / Lexical Coverage Evaluation of Large-scale Multilingual Semantic Lexicons for Twelve Languages. 2016. In proceedings of the 10th edition of the Language Resources and Evaluation Conference (LREC2016), Portorož, Slovenia, pp. 2614-2619.
 - <u>http://www.lrec-conf.org/proceedings/lrec2016/pdf/257_Paper.pdf</u>
- El-Haj, M., Rayson, P., Piao, S., & Wattam, S. (2017). Creating and validating multilingual semantic representations for six languages: expert versus non-expert crowds. In Proceedings of the 1st Workshop on Sense, Concept and Entity Representations and their Applications: Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics. (pp. 61-71). Association for Computational Linguistics.
 - <u>http://aclweb.org/anthology/W17-1908</u>

References ...

- Wmatrix, CLAWS and USAS websites:
 - <u>https://ucrel.lancs.ac.uk/wmatrix/</u>
 - <u>https://ucrel.lancs.ac.uk/claws/</u>
 - <u>https://ucrel.lancs.ac.uk/usas/</u>
- Semantic lexicon expansion
 - Sheryl Prentice, Paul Rayson, Jo Knight, Mahmoud El-Haj, Solly Elstein (2021) A Domain Based Approach to Semantic Lexicon Expansion, International Journal of Lexicography. <u>https://doi.org/10.1093/ijl/ecab028</u>
- Useful background reading (keyness, annotation and MWE):
 - Rayson, P., Archer, D., Piao, S. L., McEnery, T. (2004). The UCREL semantic analysis system. In proceedings of the workshop on Beyond Named Entity Recognition Semantic labelling for NLP tasks in association with 4th International Conference on Language Resources and Evaluation (LREC 2004), 25th May 2004, Lisbon, Portugal, pp. 7-12. http://www.lancaster.ac.uk/staff/rayson/publications/usas_lrec04ws.pdf
 - Rayson, P. (2008). From key words to key semantic domains. International Journal of Corpus Linguistics. 13:4, pp. 519-549.
 - Piao, S., Rayson, P., Archer, D., McEnery, T. (2005) Comparing and combining a semantic tagger and a statistical tool for MWE extraction. Computer Speech and Language, 19 (4), pp. 378 – 397 <u>http://dx.doi.org/10.1016/j.csl.2004.11.002</u>
 - Piao, S. (2002) Word alignment in English-Chinese parallel corpora. Literary and linguistic computing, 17 (2), 207-230. doi:10.1093/llc/17.2.207

Further reading ...

- Baker, P. (2004) Querying keywords: questions of difference, frequency and sense in keywords analysis. Journal of English Linguistics. 32: 4, pp. 346-359. DOI: 10.1177/0075424204269894
- Gries, S. T. (2006). Exploring variability within and between corpora: some methodological considerations. Corpora 1(2), pp. 109-151. <u>http://www.eupjournals.com/doi/abs/10.3366/cor.2006.1.2.109</u>
- Gabrielatos, C. and Marchi, A. (2012) Keyness: Appropriate metrics and practical issues. CADS International Conference 2012. Corpus-assisted Discourse Studies: More than the sum of Discourse Analysis and computing?, 13-14 September, University of Bologna, Italy.
- Hardie, A. (2014) Log Ratio an informal introduction. <u>http://cass.lancs.ac.uk/log-ratio-an-informal-introduction/</u>
- Leech, G. and Fallon, R. (1992). Computer corpora what do they tell us about culture? ICAME Journal, 16, pp. 29 50. http://icame.uib.no/archives/No_16_ICAME_Journal_index.pdf
- Mahlberg, M. (2007). Clusters, key clusters and local textual functions in Dickens. Corpora 2 (1), pp. 1-31. <u>http://www.eupjournals.com/doi/abs/10.3366/cor.2007.2.1.1</u>
- Rayson, P., Leech, G., and Hodges, M. (1997). Social differentiation in the use of English vocabulary: some analyses of the conversational component of the British National Corpus. International Journal of Corpus Linguistics. 2 (1), pp 133 - 152. <u>http://ucrel.lancs.ac.uk/papers/rlh97.html</u>
- Scott, M. (1997). PC analysis of key words and key key words. System 25 (2), pp. 233 245.
- Adam Kilgarriff (2005) Language is never ever ever random. Corpus Linguistics and Linguistic Theory 1 (2): 263-276. <u>http://www.kilgarriff.co.uk/Publications/2005-K-lineer.pdf</u>
- Baron, A., Rayson, P., & Archer, D. (2009). Word frequency and key word statistics in corpus linguistics. Anglistik, 20(1), 41-67.
- Rayson, P. and Potts, A. (2021) Analysing keyword lists. In Gries, S. Th. And Paquot, M. (eds.) A Practical Handbook of Corpus Linguistics. Springer.

Acknowledgements

- Wmatrix was initially developed within the REVERE project (REVerse Engineering of Requirements) funded by the EPSRC, project number GR/MO4846, 1998-2001. Collocation Network Explorer (CONE), developed by David Gullick, was partly funded by an EPSRC vacation bursary at Lancaster University in 2010, and incorporates a collocation library designed by Scott Piao.
- Ongoing maintenance of taggers (e.g. Linux porting work by Stephen Wattam), development of new components (e.g. L-gram developed by Eddie Bell, C-grams developed by Andrew Stone, Java taggers developed by Scott Piao, Python 'pymusas' developed by Andrew Moore) and dictionary updates (e.g. by Sheryl Prentice) are funded by user licence fees.
- Metaphor extensions have been developed in the MELC project (Metaphor in end-of-life care) funded by the ESRC (grant reference ES/J007927/1). The Historical Thesaurus Semantic Tagger (HTST) was developed in the SAMUELS project (Semantic Annotation and Mark-Up for Enhancing Lexical Searches) funded by the AHRC in conjunction with the ESRC (grant reference AH/L010062/1). Welsh semantic tagger developed in the CorCenCC project funded by ESRC and AHRC (grant reference ES/M011348/1).