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Abstract

Abbreviations are common in biomedical documents and many are ambiguous in the sense that they have several potential expansions. For example, possible expansions of ``BSA” include “Body Surface Area” and “Bovine Serum Albumin”.  Identifying the correct expansion is necessary for language understanding and important for applications such as document retrieval. 
Automatic language processing can assist in the disambiguation of ambiguous abbreviations using a process known as Word Sense Disambiguation (WSD). The most successful WSD systems are based on supervised learning approaches and require training data in the form of a corpus containing examples of ambiguous abbreviations annotated with the relevant expansion. The annotation of such corpora is a difficult and time-consuming task. It is, however, possible to automatically create a corpus of abbreviations by making use of the fact that they are often introduced in text together with their expansion. This paper describes the creation of a corpus of ambiguous abbreviations found in biomedical abstracts using this process. A set of 21 abbreviations used by previous researchers (Liu et. al., 2001, 2002, 2004) were chosen and examples searched for in PubMed, a database containing more than 18 million abstracts from publications in the life sciences.
We also describe a WSD system that uses a variety of knowledge sources, including two types of information specific to the biomedical domain. This system was tested on our corpus and found to identify the correct expansion with up to 99% accuracy. 

1 Introduction

Many abbreviations are ambiguous in the sense that they have more than one possible expansion. For example, expansions for “NLP” include “Neuro-linguistic Programming” as well as “Natural Language Processing”. Ambiguous abbreviations form a challenge to language understanding since identification of the correct expansion is often important. The query “NLP”, for example, returns pages which refer to “Neuro-linguistic programming” for most web search engines, pages which are of limited value to those interested in Natural Language Processing. In some cases this problem could be solved by altering the query terms, for example including “Natural”, “Language” and “Processing”. However, this will not help when the abbreviation's expansion does not occur within the document. Fred and Cheng (1999) point out that this is often the case in biomedical documents – in this domain ubiquitous abbreviations (such as DNA and mRNA) often appear without an expansion. 
Knowledge of the subject domain of a document often helps to identify the expansion of an abbreviation; in a management training manual “NLP” is more likely to mean “Neuro-linguistic Programming” than “Natural Language Programming”. However, such knowledge may not be sufficient, since there may be several possible expansions for an abbreviation within some domains, such as biomedicine. Chang et. al. (2002) reported that abbreviations in biomedical journal articles consisting of six characters or less have an average of 4.61 possible meanings, while Pustejovsky et. al. (2002) mention that the simple abbreviation “AC” is associated with at least 10 strings in different biomedical documents including “atrioventricular connection”, “anterior colporrhaphy procedure”, “auditory cortex” and “atypical carcinoid”. Kuhn (2007) also comment that the misinterpretation of acronyms in clinical settings can have a detrimental effect on patient safety.
The problem of identifying the correct expansion of an ambiguous abbreviation can be viewed as a Word Sense Disambiguation (WSD) task where the various expansions are the “senses” of the abbreviation. In this paper we approach the problem in this way by applying a WSD system previously applied to biomedical text (Stevenson et al., 2008). The WSD system uses a variety of information sources, those traditionally applied to the WSD problem in addition to two that are specific to the biomedical domain. 

Evaluation of systems for disambiguating ambiguous abbreviations has been hindered by the fact that there is no freely available benchmark corpus against which approaches can be compared. We describe a process whereby such a corpus can be created by automatically mining abstracts from Medline, a large bibliographic corpus including abstracts from academic publications related to medicine. This corpus is being made publicly available to encourage comparative research in this area. Our abbreviation disambiguation system was evaluated against this corpus and found to identify the correct abbreviation with up to 99% accuracy. 

The remainder of this paper is organised as follows. The next section describes relevant previous work on disambiguation of abbreviations. Section 3 describes the automatic creation of a corpus of ambiguous abbreviations designed specifically for the training and evaluation of abbreviation disambiguation systems. Section 4 describes a supervised learning WSD system tailored specifically to the biomedical domain. Section 5 describes the evaluation of our system on this corpus. Our conclusions are presented in Section 6.

2 Previous Work

Gaudan et. al. (2005) distinguish two types of abbreviations: global and local. Global abbreviations are those found in documents without the expansion explicitly stated, while local abbreviations are defined in the same document in which the abbreviation occurs. Our work is concerned with the problem of disambiguating   global abbreviations. Gaudan et. al. (2005) point out that global abbreviations are often ambiguous. 

Various researchers have explored the problem of disambiguating global abbreviations in biomedical documents. Liu et. al. (2001) and Liu et. al. (2002) used several domain-specific knowledge sources to identify terms that are semantically related to each possible expansion of an ambiguous abbreviation but which are themselves unambiguous.  Instances of such terms were identified in a corpus of biomedical journal abstracts and used as training data. Their learning algorithm uses a variety of features including all words in the abstract and collocations of the ambiguous abbreviation.  They report an accuracy of 97% on a small set of abbreviations. Liu et. al. (2004) present a fully supervised approach. They compared a variety of supervised machine learning algorithms and found that the best performance over a set of 15 ambiguous abbreviations, 98.6%, was obtained using Naïve Bayes. Gaudan et. al. (2005) use a Support Vector Machine trained on a bag-of-words model and  report an accuracy of 98.5%. Yu et. al. (2006)  experimented with two supervised learning algorithms: Naive Bayes and Support Vector Machines. They extracted a corpus containing examples of 60 abbreviations from a set of biomedical journal articles that was split so that abstracts in which the abbreviations were defined were used as training data and those in which no definition is found as test data. Abbreviations in the test portion were manually disambiguated. They report 79% coverage and 80% precision using a Naive Bayes classifier. Pakhomov (2002) applied a maximum entropy model to identify the meanings of ambiguous abbreviations in 10,000 rheumatology notes with around 89% accuracy. Joshi et. al. (2006) disambiguated abbreviations in clinical notes using three supervised learning algorithms: Naive Bayes, decision trees and Support Vector Machines. They used a range of features and found that the best performance was obtained when these were combined. Unfortunately direct comparison of these methods is made difficult by the fact that various researchers have evaluated their approaches on different data sets.

A variety of approaches have also been proposed for the problem of disambiguating local abbreviations in biomedical documents. This task is equivalent to identifying the abbreviation's expansion in the document.  The problem is relatively straightforward for abbreviations which are created by selecting the first character from each word in the expansion, such as “angiotensin converting enzyme (ACE)”, but is more difficult when this convention is not followed, for example “acetylchlinesterase (ACE)”, “antisocial personality (ASP)” and “catalase (CAT)”. Okazaki et. al. (2008) recently proposed an approach to this problem based on discriminative alignment that has been shown to perform well. However, the most common solutions are based on heuristic approaches, for example Adar (2004) and Zhou et. al. (2006). Pustejoveky et. al. (2002) used hand-built regular expressions. Schwartz and Hearst (2003) describe an approach that starts by identifying the set of candidate expansions in the same sentence as an abbreviation. The most likely one is identified by searching for the shortest candidate containing all the characters in the abbreviation in the correct order. 

3. Corpus

The most common method for generating corpora to train and test WSD systems is to manually annotate instances of ambiguous terms found in text with the appropriate meaning. However, this process is both time-consuming and difficult (Artstein and Poesio, 2008). An alternative to manual tagging is to find a way of automatically creating sense tagged corpora. For the translation of ambiguous English words, Ng et. al. (2003) made use of the fact that the various senses are often translated differently. For example when “bank” is used in the `financial institution’ sense it is translated to French as “banque” and “bord'” when it is used to mean `edge of river’. However, a disadvantage of this approach is that it relies on parallel text and this is often difficult to obtain. In the biomedical domain Liu et. al. (2001)(2002) created a corpus using unambiguous related terms (see Section 2), although they found that it was not always possible to identify suitable related terms. 

3.1 Corpus Creation

Liu (2001) also made use of the fact that when abbreviations are introduced they are often accompanied by their expansion, for example ``BSA (bovine serum albumin)". This phenomenon was exploited to automatically generate a corpus of abbreviations and associated definitions by replacing the abbreviation and expansion with the abbreviation alone. For example, the sentence “The adsorption behavior of bovine serum albumin (BSA) on a Sepharose based hydrophobic interaction support has been studied.”  becomes “The adsorption behavior of BSA on a Sepharose based hydrophobic interaction support has been studied.”
We used this approach to create a corpus of sense tagged abbreviations in biomedical documents using a set of 21 three letter abbreviations used in previous research on abbreviation disambiguation (Liu et. al., 2001; 2002; 2004). The majority of candidate expansions for these abbreviations were taken from the previous papers using these abbreviations, although the Medstract database (Pustejovsky et. al., 2002) was used when they were not included. The potential expansions for each abbreviation are shown in Figure 1.

We searched for instances of the 21 abbreviations in Medline, a database containing more than 18 million abstracts from publications in biomedicine and the life sciences. For each abbreviation we queried Medline, using the Entrez interface, to identify documents containing one of its meanings. For example the abbreviation “BSA” has two possible expansions: “body surface area” and “bovine serum alumin”. Medline is searched to identify documents that contain each possible expansion of the abbreviation using the following queries:

“BSA” AND “body surface area”  NOT “bovine serum albumin”

“BSA” AND “bovine serum albumin” NOT “body surface area”

Each query matches documents containing the abbreviation and relevant expansion and no mentions of the other possible expansion(s).

The retrieved documents are then processed to remove the expansions of each abbreviation. The Schwartz and Hearst (2003) algorithm for identifying abbreviations and the relevant expansion (see Section 2) is then run over each of the retrieved abstracts to identify the correct expansion. The expansion is removed from the document and stored separately, effectively creating a sense tagged corpus. For convenience the abstracts are converted into a format similar to the one used for the NLM-WSD corpus (Weeber et. al., 2001).
	ACE
	Acetylcholinesterase
	EMG
	electromyography

	
	angiotensin converting enzyme
	
	electromyogram

	
	antegrade colonic enema
	FDP
	fructose diphosphate

	ANA
	American Nurses Association
	
	formycin diphosphate

	
	antinuclear
	
	fibrinogen

	
	Anandamide
	
	flexor digitorum profundus

	APC
	adenomatous polyposis coli
	LAM
	lipoarabinomannan

	
	atrialpremature complexes
	
	lymphangiomyomatosis

	
	aphidicholin
	
	leukocyte adhesion molecule

	
	activated protein c
	
	lymphangioleiomyomatosis

	
	antigen-presenting cells
	MAC
	membrane attack complex

	ASP
	antisocial personality
	
	macrophage

	
	asparaginase
	
	mycobacterium avium complex

	
	aspartic acid
	
	macandrew alcoholism scale

	
	ankylosing spodylitis
	
	monitored anesthesia care

	
	aspartate
	MCP
	metacarpophalangeal joint

	BPD
	borderline personality disorder
	
	multicatalytic protease

	
	bronchopulmonary dysplasia
	
	metoclopramide

	
	biparietal diameter
	
	monocyte chemoattractant protein

	BSA
	body surface area
	
	membrane cofactor protein

	
	bovine serum albumin
	PCA
	passive cutaneous anaphylaxis

	CAT
	chloramphenicol acetyltransferase
	
	patient controlled analgesia

	
	catalase
	
	posterior communicating artery

	
	carboxyatractyloside
	
	posterior cerebral artery

	CML
	chronic myelogenous leukemia
	
	principal component analysis

	
	cell-mediated lympholysis
	PCP
	pentachlorophenol

	
	cell-mediated lymphtoxicity
	
	pneumocystis carinii pneumonia

	
	cell-mediated lysis
	PEG
	polyethylene glycols

	CMV
	cytomegalovirus
	
	percutaneous endoscopic gastrostomy

	
	cucumber mosaic virus
	PVC
	polyvinylchloride

	CSF
	cerebrospinal fluid
	
	premature venticular contraption

	
	colony stimulating factors
	RSV
	respiratory syncytial virus

	
	cytostatic factor
	
	rous sarcoma virus

	DIP
	desquamative interstitial pneumonia
	
	
	

	
	distal interphalangeal
	
	
	


Figure 1 Expansions for the 21 abbreviations used to create the corpus
3.2 Corpus Properties
The resulting corpus consists of 55,655 documents. For each abbreviation Table 1 shows the number of abstracts retrieved from Medline (in the column labelled “Abstracts”) and the number of expansions (“Expansions” column). It can be seen that the number of abstracts identified varies widely between abbreviations. For ASP only 71 were found while 14871 containing CSF were downloaded. 

	Abbreviation
	Abstracts
	Expansions

	ACE
	3105
	3

	ANA
	100
	3

	APC
	3146
	5

	ASP
	71
	5

	BPD
	1841
	3

	BSA
	5373
	2

	CAT
	4636
	3

	CML
	2234
	4

	CMV
	7665
	2

	CSF
	14871
	3

	DIP
	209
	2

	EMG
	2052
	2

	FDP
	130
	4

	LAM
	325
	4

	MAC
	955
	5

	MCP
	815
	5

	PCA
	2442
	5

	PCP
	1642
	2

	PEG
	607
	2

	PVC
	234
	2

	RSV
	3203
	2

	AVERAGE
	2650
	3.2


Table 1 Number of abstracts retrieved from Medline for each abstract

Similarly, there are large differences between the number of examples downloaded for each expansion. Table 2 shows, for each abbreviation, the proportion of the downloaded examples for each of the possible expansions. The columns labelled 1st, 2nd etc. list the percentage of the examples that represent the most frequent expansion, followed by the next most frequent and so on. There is a wide variation between the frequency of the most common expansion with over 99% of the occurrences of “CSF” representing one expansion (“cerebrospinal fluid”) while for “ASP” two of the five possible expansions (“antisocial personality” and “aspartate”) each account for almost 34% of the documents. In addition, several abbreviations have expansions that only occur rarely. For example, two of the expansions of “APC” (“atrial pressure complexes” and “aphidicholin”) each have only a single document and account for just 0.03% of the instances of that abbreviation. We refer to expansions that represent less than 1% of the examples as “Rare” and these are shown in italics in Table 2. 
	Abbreviation
	Expansions

	
	1st
	2nd
	3rd
	4th
	5th

	ACE
	98.71
	0.87
	0.42
	
	

	ANA
	58.00
	27.00
	15.00
	
	

	APC
	39.38
	34.01
	26.54
	0.03
	0.03

	ASP
	33.80
	33.80
	18.31
	11.27
	2.82

	BPD
	46.66
	36.12
	17.22
	
	

	BSA
	86.36
	13.64
	
	
	

	CAT
	55.20
	44.37
	0.43
	
	

	CML
	91.72
	6.89
	0.85
	0.54
	

	CMV
	96.67
	3.33
	
	
	

	CSF
	99.09
	0.57
	0.34
	
	

	DIP
	75.12
	24.88
	
	
	

	EMG
	88.40
	11.60
	
	
	

	FDP
	78.46
	14.66
	5.39
	1.54
	

	LAM
	48.31
	47.69
	3.08
	0.92
	

	MAC
	64.29
	29.84
	3.04
	2.30
	0.52

	MCP
	50.18
	25.03
	22.82
	1.10
	0.86

	PCA
	68.88
	18.31
	8.27
	4.38
	0.17

	PCP
	57.80
	42.21
	
	
	

	PEG
	94.07
	5.93
	
	
	

	PVC
	78.21
	21.80
	
	
	

	RSV
	76.70
	23.30
	
	
	


Table 2: Distribution of expansions for each abbreviation

3.3 Corpus Reduction

Given the diversity of the abbreviations which were downloaded from Medline, both in terms of number of documents and distribution of senses, subsets of this corpus that are more suitable for WSD experiments were created. Corpora containing 100, 200 and 300 randomly selected examples of each abbreviation were generated and these are referred to as Corpus.100, Corpus.200 and Corpus.300 respectively. 

Some of the 21 abbreviations were not suitable for inclusion in these corpora. Abbreviations were not included in the relevant corpus if an insufficient number of examples were retrieved from Medline.  For example, only 71 abstracts containing “ASP” were retrieved and it is not included in any of the three corpora. Similarly, “ANA” and “FDP” were excluded from Corpus.200 or Corpus.300 and “DIP” and “PVC” from Corpus.300. In addition, rare senses, those which represent fewer than 1% of the occurrences of an abbreviation in all retrieved abstracts, were discarded.  Finally, two abbreviations (“ACE” and “CSF”) have only one sense that is not “Rare” (see Table 2) and these were also excluded from the reduced corpora.

Consequently, Corpus.100 contains 18 abbreviations (“ACE”, “ASP” and “CSF” are excluded), Corpus.200 contains 16 (“ANA” and “FDP” are also excluded) and Corpus.300 contains 14 (“DIP” and “PVC” also excluded). Where an abbreviation is included in more than one corpus, all the examples in the smaller corpus are included in the larger one(s). For example, the 100 examples of “APC” in Corpus.100 are also included in Corpus.200 and Corpus.300.

4 Abbreviation Disambiguation System

Our abbreviation disambiguation system is based on a state-of-the-art WSD system that has been adapted to the biomedical domain by augmenting it with additional knowledge sources. Our approach is based on the system Agirre and Martinez (2004) submitted to the Senseval-3 challenge (Mihalcea et. al., 2004) with a performance close to the best system for the lexical sample tasks in two languages while the version adapted to the biomedical domain has achieved the best recorded results (Stevenson et. al., 2008) on a standard test set consisting of ambiguous terms (Weeber et. al., 2001) and has also been found to perform well when applied to the disambiguation of abbreviations (Stevenson et. al., 2009). 
This system is based on a supervised learning approach with features derived from text around the ambiguous word that are domain independent. We refer to these as linguistic features. This feature set has been adapted for the disambiguation of biomedical text by adding further linguistic features and two different types of domain-specific features: CUIs (as used by (McInnes et. al., 2007)) and Medical Subject Heading (MeSH) terms. This set of features is more diverse than have been explored by previous approaches to abbreviation disambiguation. 

4.1 Features

Our feature set contains a number of parameters (e.g. thresholds for unigram and CUI frequencies). These parameters were set to the same values that were used when the system was applied to general biomedical terms (Stevenson et. al., 2008) since these were found to perform well. We also use the entire abstract as the context of the ambiguous term for relevant features rather than just the sentence containing the term. Effects of altering these variables are consistent with previous results (Liu et. al, 2004; Joshi et. al., 2005; McInnes et. al, 2007) and are not reported here. 

Linguistic features: The system uses a wide range of domain-independent features that are commonly employed for WSD. 

· Local collocations: A total of 41 features which extensively describe the context of the ambiguous word and fall into two main types: (1) bigrams and trigrams containing the ambiguous word constructed from lemmas, word forms or PoS tags and (2) preceding/following lemma/word-form of the content words (adjective, adverb, noun and verb) in the same sentence as the ambiguous abbreviation. For example, consider the phrase “Lean BSA was obtained from height and lean body weight ...” which contains the target abbreviation “BSA”. Some of the collocations that would be generated are shown in Table 3. Note that some collocations are not applicable to this example, for example there is no value for the “right content word lemma” collocation since the word immediately to the right of the target (“was”) is not a content word. 
	Feature
	Value

	Left  content words lemmas
	lean BSA

	Right content words lemmas
	-

	Left function words lemmas
	-

	Right function words lemmas
	BSA be

	Left PoS
	JJ NNP

	Right PoS
	NNP VBD

	Left content words form
	lean BSA

	Right content words form
	-

	Left function words form
	-

	Right function words form
	BSA was

	Preceding lemma 
	lean

	Following lemma
	obtain

	….
	


Table 3 Example local collocation features

· Salient bigrams: Salient bigrams in the context, where context is defined as the lemmas of the content words in the abstract and all words within an eight word window around the target word.  This approach is as described by Pedersen (2001). 
· Unigrams: Lemmas of all content words in the abstract and words within an eight word window around the target word, excluding those in a list of stopwords. In addition, the lemmas of any unigrams appearing at least twice in the entire corpus and which are found in the abstract are also included as features. 

Concept Unique Identifiers (CUIs): We follow the approach presented by McInnes et. al. (2007) to generate features based on UMLS Concept Unique Identifiers (CUIs). The MetaMap program (Aronson, 2001) identifies all words and terms in a text that are mapped onto a UMLS CUI. MetaMap does not disambiguate the senses of the concepts, instead it enumerates likely candidate concepts.  For example, MetaMap will segment the phrase “Lean BSA was obtained from  height and lean body weight ...” into four chunks: “Lean BSA”, “obtained”, “from height” and “lean body weight”.  The first chunk will be mapped onto three CUIs: “C1261466: BSA (Body surface area)”, “C1511233: BSA (NCI Board of Scientific Advisors)” and “C0036774: BSA (Serum Albumin, Bovine)”. The chunk “lean body weight” is mapped onto two concepts: “C0005910: Body Weight” and “C1305866: Body Weight (Weighing patient)”. (The first of these, C0005910, refers to the weight of a patient as a property of that individual while the second, C1305866, refers to the process of weighing a patient as part of a diagnostic procedure.) CUIs occurring more than twice in an abstract are included as features. CUIs have been used for various disambiguation tasks in the biomedical domain, including disambiguation of ambiguous general terms (McInnes et. al., 2007) and gene symbol disambiguation (Xu et. al., 2007), but not, to our knowledge, for abbreviation disambiguation. 

Medical Subject Headings (MeSH): The final feature is also specific to the biomedical domain. Medical Subject Headings (MeSH) (Nelson et. al., 2002) is a controlled vocabulary for indexing biomedical and health-related information and documents.  MeSH terms are manually assigned to abstracts by human indexers. The latest version of MeSH (2009) contains over 25,000 terms organised into an 11 level hierarchy. 

The terms assigned to the abstract in which each ambiguous word occurs are used as features. For example, the abstract containing our example phrase has PubMed ID 9422838 which has been assigned 16 MeSH terms including “M01.060.116.100: Age”, “M01.060.116.100.080: Aged, 80 and over”, “D27.505.954.502.119: Anticoagulants” and “G09.188.261.560.150: Blood Coagulation”. To our knowledge MeSH terms have not been previously used as a feature for WSD of biomedical documents.

The MeSH terms assigned to the abstract in which each ambiguous word occurs are used as features. For example, the abstract containing our example phrase has been assigned 16 terms including “Body Surface Area”, “Body Weight”, “Humans” and “Organ Size”. MeSH terms have previously been used for abbreviation disambiguation by Yu et. al. (2006).
4.2 Learning Algorithms

These features are combined using machine learning algorithms. We compared three that have been shown to perform well in previous WSD experiments. 

The Vector Space Model (VSM) is a memory-based learning algorithm and was used by Agirre and Martinez (2004). Each occurrence of an ambiguous word is represented as a binary vector in which each position indicates the occurrence/absence of a feature. A single centroid vector is generated for each sense during training. These centroids are compared with the vectors that represent new examples using the cosine metric to compute similarity. The sense assigned to a new example is that of the closest centroid. 

The Naive Bayes (NB) classifier is based on a probabilistic model that assumes conditional independence of features given the target classification. It calculates the posterior probability that an instance belongs to a particular class given the prior probabilities of the class and the conditional probability of each feature given the target class. 

Support Vector Machines (SVM) have been widely used in classification tasks. SVMs map feature vectors onto a high dimensional space and construct a classifier by searching for the hyperplane that gives the greatest separation between the classes. 
We used our own implementation of the Vector Space Model and Weka implementations (Witten and Frank, 2005) of the other two algorithms.

5. Experiments

Various combinations of learning algorithms and features were applied to the three reduced corpora described in Section 3.3. Performance of the WSD system is measured in terms of the proportion of abbreviation instances for which the correct expansion is identified. 10-fold cross validation was used for all experiments and all quoted results refer to the average performance across the 10 folds. Results are shown in Table 4. The baseline figures, based on selecting the most frequent expansion for each abbreviation, are shown for each corpus. Note that these figures vary slightly across the three corpora because of the different set of abbreviations included in each (see Section 3.3).

	Algorithm
	Features

	
	Ling
	CUI
	MeSH
	Ling + CUI
	Ling +

MeSH
	CUI + MeSH
	Ling + CUI + MeSH

	
	Corpus.100 (Baseline = 69)

	SVM
	93.4
	90.0
	94.9
	94.7
	94.6
	93.8
	95.4

	NB
	94.0
	91.7
	94.9
	95.1
	94.7
	94.4
	95.8

	VSM
	96.8
	93.7
	88.8
	97.0
	97.1
	93.9
	97.4

	
	Corpus.200 (Baseline = 69.1)

	SVM
	95.7
	91.1
	96.4
	96.4
	96.4
	94.7
	96.5

	NB
	96.6
	92.6
	96.2
	96.9
	97.1
	95.5
	97.2

	VSM
	97.9
	93.0
	89.4
	98.2
	98.1
	94.7
	98.4

	
	Corpus.300 (Baseline = 68.7)

	SVM
	96.6
	91.4
	97.0
	96.8
	97.4
	95.4
	97.5

	NB
	97.1
	93.3
	96.0
	97.1
	97.6
	96.0
	97.8

	VSM
	98.1
	93.8
	89.4
	98.7
	98.5
	95.7
	99.0


Table 4 Performance of WSD system using various combinations of learning algorithms and features (“Ling” refers to linguistic features, “CUI” to Concept Unique Identifiers and “MeSH” to Medical Subject Headings). 
The WSD system consistently outperforms the baseline for the relevant corpus and, with a few exceptions, above 90%. Performance improves as additional training examples are added and this would be expected when using a supervised WSD system. However, even when the number of examples is relatively low, just 100, performance of the best configuration (VSM learning algorithm with all three types of feature) is 97.4%. 

The best result, 99% (300 training examples, VSM learning algorithm with all three feature types), exceeds reported performance of previous abbreviation disambiguation systems (see Section 2). Although these results are not directly comparable, since these studies used different evaluation corpora, the set of ambiguous abbreviations used in this study and methodology for corpus creation are similar to those used by Liu et. al. (2001)(2002)(2004).
The best performance for each learning algorithm is obtained when all three types of features are combined. The difference between performance obtained using all three feature types and using only the MeSH or CUI features is statistically significant (Wilcoxon Signed Ranks test, p < 0.01) although the difference between this and performance using just the linguistic features is not. 

The VSM learning algorithm generally performs better than either the SVM or Naive Bayes learning algorithms. The difference between performance of VSM and the other algorithms is statistically significant for Corpus.100 but not for the other two, suggesting that this learning algorithm is better able to cope with small number of training examples than Naive Bayes and Support Vector Machines. Strong performance of the VSM algorithm is consistent with previous work that has shown that this algorithm performs well on the disambiguation of ambiguous terms in both biomedical and general text (Agirre and Martinez, 2004; Stevenson et. al. 2008). 

Performance of our system on this task is higher than would be expected for most WSD tasks suggesting that the problem of abbreviation disambiguation is simpler than the disambiguation of general terms. The most probable reason for this is that the various expansions of abbreviations in our corpus are more distinct and better defined than senses for general terms. For example, the three possible expansions for “ANA” in our corpus are a professional body (“American Nurses Association”), a type of medical test (“antinuclear”) and a neurotransmitter (“Anandamide”). These diverse meanings will tend to occur in very different contexts and in documents with different topics. It is also known that distinctions between possible meanings of words in natural language are often vague (Kilgarriff, 1993). Clearer distinctions between possible expansions of abbreviations make the task of identifying the correct one more straightforward than identifying meanings of ambiguous words. In addition, the creation of annotated data for WSD is often hampered by the difficulty in obtaining sufficient agreement between annotators (Artstein and Poesio, 2008; Weeber et. al., 2001) and this problem does not apply to our automatically generated corpus. 

5.1 Performance of Individual Abbreviations

Table 5 shows the performance of the best WSD system (VSM learning algorithm with all features) for each abbreviation in the three subsets of our corpus. Baseline performance (i.e. the most frequent expansion) is also shown in the second column. Our system performs well for all abbreviations including those with low baselines, for example “APC”, “BPD” and “LAM”. Accuracy is no lower than 92% for any abbreviation using Corpus.100 and no lower than 97% for Corpus.300, demonstrating that the approach is robust. There is a slight negative correlation (r = -0.24) between the baseline and performance obtained by the WSD system for Corpus.100.
	
	Baseline
	Corpus.100
	Corpus.200
	Corpus.300

	ANA
	0.58
	98.0
	
	

	APC
	0.39
	98.0
	100
	100

	BPD
	0.47
	100
	100
	100

	BSA
	0.86
	97.0
	97.0
	98.2

	CAT
	0.55
	99.0
	99.0
	100

	CML
	0.92
	96.0
	99.0
	100

	CMV
	0.97
	97.0
	97.0
	97.0

	DIP
	0.75
	100
	100
	

	EMG
	0.88
	92.0
	96.0
	98.0

	FDP
	0.78
	97.0
	
	

	LAM
	0.48
	96.0
	98.0
	98.0

	MAC
	0.64
	97.0
	99.0
	98.9

	MCP
	0.50
	98.0
	97.8
	100

	PCA
	0.69
	96.0
	98.7
	99.2

	PCP
	0.58
	99.0
	100
	100

	PEG
	0.94
	98.0
	98.2
	100

	PVC
	0.78
	99.0
	100
	

	RSV
	0.77
	96.0
	97.2
	97.8


Table 5 Performance of WSD system over individual abbreviations in three reduced corpora
It is interesting to note that the abbreviations with the lowest performance tend to have expansions that are closely related. For example, the two expansions of “EMG” are “electromyography” and “electromyogram” while for “LAM” one expansion (“Lymphangioleiomyomatosis”) is a rare lung disease and the other (“Lipoarabinomannan”) a molecule associated with another lung disease (tuberculosis). On the other hand, abbreviations that are more accurately disambiguated tend to have expansions with more distinct meanings. For example, “BPD” can be an acronym for “borderline personality disorder” (a psychiatric diagnosis), “bronchopulmonary dysplasia” (a lung disease) or “biparietal diameter” (diameter of a foetus' head in an ultrasound) and the expansions of “DIP” are “desquamative interstitial pneumonia” (a lung disease) and “distal interphalangeal joints” (types of joints in the human hand and foot). 

6. Conclusions

This paper has presented an approach to the disambiguation of ambiguous abbreviations in biomedical documents. We treat this problem as a form of WSD and apply a system that combines a wider range of features than have been previously applied, including those which are commonly used within WSD systems in addition to information from two domain-specific knowledge sources. The approach is evaluated using a corpus of abbreviations automatically mined from Medline and found to identify the correct expansion with accuracy of up to 99%. This figure is higher than previously reported results for abbreviation disambiguation systems, although direct comparison is difficult due to the use of different data sets. It was also found that best performance could be obtained using a simple machine learning algorithm and a diverse range of knowledge sources. Performance of our system is higher than is normally achieved by WSD systems when applied to general terms and we suggest that the reason for this is that the various expansions of abbreviations are better defined and more distinct than the senses of ambiguous words.

This study has been limited to the disambiguation of abbreviations consisting of exactly three letters. Possibilities for future work include experimenting with abbreviations of various lengths. 

Data

The corpus described in this paper is freely available to researchers. Texts from PubMed cannot be freely distributed without permission of the large number of copyright holders, despite being easily accessible on the internet.  Consequently we distribute a tool that allows the corpus to be reconstructed using a small program that automatically downloads the relevant documents from PubMed and carries out the necessary reformatting. This tool is written in the Perl programming language and is distributed under the GNU General Public License. It is available from http://nlp.shef.ac.uk/BioWSD/downloads/abbreviationdata/
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