
Corpus linguistics meets language technology:
deep syntactic parsing for question answering

Nelleke Oostdijk

Department of Language and Speech
University of Nijmegen, The Netherlands

n.oostdijk@let.kun.nl

Abstract

To the extent that NLP is used by QA systems, it is mostly limited to tokenization, named entity
recognition, stemming, POS tagging, and shallow parsing. More sophisticated NLP such as (deep)
syntactic parsing is hardly ever used. In the present paper I investigate why this should be the case and
try to establish how deep syntactic parsing as developed in the field of corpus linguistics might
contribute to improve the overall performance of such systems.

Keywords: deep syntactic parsing, question answering, corpus linguistics

1. Introduction

The amount of information on the Internet is vast and continues to grow steadily. For users to
successfully explore the Internet it is essential that they can gain effective access to the information.
With the present search engines, it is possible – in response to a user’s query – to retrieve a set of
documents that are likely to contain relevant information. Although users have learned to make do with
the present systems, they are quite some distance removed from what users actually want. Ideally, it
should be possible to formulate questions or some other forms of requests for information in the same
fashion as one does in human communication, and either retrieve a set of documents or obtain a direct
answer, whichever is preferred.

The organizers of the Text REtrieval Conferences (TREC) in 1999 set up a Question Answering
(QA) Track to encourage research in this field. Research groups were invited to compete on the
following task: given a set of fact-based questions and a collection of newspaper/newswire texts, return
a ranked list of [document, answer string] pairs. Answer strings were limited to 50 or 250 bytes and the
document had to support the answer (cf. Voorhees 2000). Systems that participated all had more or less
the same architecture (cf. de Boni 2001): they created a query from the user’s question, used
information retrieval to locate (segments of) documents likely to contain an answer, and then
pinpointed the most likely answer passage within the candidate documents (cf. Hovy et al. 2001: 339).

Since the first QA track was organized (TREC-8), it has taken on the form of a yearly event which
attracts more participants each year. Over the years the task has become more realistic. Whereas the
early QA tracks included a single task, in TREC-10 three separate tasks were defined: the main task,
the list task and the context task (cf. Voorhees 2002). The main task was essentially the same task as it
was set previously, the difference being that it was no longer guaranteed that the text collection
contained the answer to a given question. In last year’s TREC, the difficulty of the task was further
increased as questions now required an exact answer (a noun or a noun phrase) instead of a text snippet
containing the answer. It is expected that future TREC QA tracks will increase the kinds and difficulty
of the questions that systems are expected to handle. This is in line with the goal of the
ARDA/AQUAINT programme which “intends to address a scenario in which multiple inter-related
questions are asked in a focused topic area by a skilled, professional information analyst who is
attempting to respond to larger, more complex information needs or requirements.” (http://www.ic-
arda.org/ InfoExploit/aquaint/)

Throughout the various TRECs the basic strategy of most systems has remained the same.
However, as Voorhees (2002) observes in her overview of the TREC2001 QA track, “there was much
less agreement on the best approaches to realizing that strategy. ” She summarizes the approaches taken
by the participants in TREC-10 as follows, identifying two areas in which they divert:

Many groups continued to build systems that attempt a full understanding of the question, but increasingly many
groups took a more shallow, data-driven approach. The data-driven approaches rely on simpler pattern matching
methods using very large corpora (frequently the web) rather than sophisticated language processing. The idea

 603

mailto:n.oostdijk@let.kun.nl

exploited in the massive data approach is that in a large enough data source a correct answer will usually be repeated
often enough to distinguish it from the noise that happens to occasionally match simple patterns.

A second area in which there is no consensus as to the best approach is classification schemes for answer types.
Some systems use a few very broad classes of answer types, while others use many specialized classes. The
difference is a standard trade-off between coverage and accuracy. With many specialized answer types, finding the
actual answer once an answer type is correctly classified is much easier because of the specificity of the class.
However, deciding which class is correct, and ensuring there is a class for all questions, is more difficult with many
specialized classes.

In the present paper I investigate the role of natural language processing (NLP) in QA systems and try
to establish how deep syntactic parsing as developed in the field of corpus linguistics might contribute
to improve the overall performance of such systems.

2. NLP in QA systems

Although an evaluation of the respective contributions made by NLP components to the relative
performance of systems is impossible – in the published reports and papers generally no detailed
information is given about how exactly systems work and in-depth analyses of the performance are
lacking (cf. De Boni 2002) – an inventory of the types of NLP components used in the various systems
participating in the TREC QA track brings to light that to the extent that NLP is used by most systems
it is mostly limited to tokenization, named entity recognition, stemming, POS tagging, and shallow
parsing. So far, more advanced NLP such as (deep) syntactic parsing is hardly ever used. Various
explanations have been given why this should be the case. Apart from the argument put forward by
Voorhees viz. “that in a large enough data source a correct answer will usually be repeated often
enough to distinguish it from the noise that happens to occasionally match simple patterns”, other
arguments have been raised against the use of syntactic parsing in the context of QA. Thus Jurafsky
and Martin (2000: 573) observe that analyses obtained through syntactic parsing are “often not
particularly well-suited for the task of compositional semantic analysis”. The structures yielded by
conventional parsers suffer from the fact that (1) key semantic elements are often widely distributed
across parse trees, thus complicating the composition of the meaning representation; (2) many
syntactically motivated constituents play essentially no role in semantic processing; and (3) the general
nature of many syntactic constituents results in semantic attachments that create nearly vacuous
meaning representations (cf. Jurafsky and Martin 2000: 573-574). While in this interpretation the
mismatch between syntactic structure and semantic analysis must essentially be attributed to the nature
of syntactic analysis, it fails to recognize that this is not an inherent quality of syntax, but rather the
consequence of an unfortunate choice of descriptive framework and possibly the inadequacy of the
representation of the analysis. Another factor that has played a role in the limited use of syntactic
parsing is the fact that the coverage of parsers generally has been insufficient and parsers on the whole
have appeared to be not robust enough to deal with text in an unrestricted domain. This suggests that
for syntax to play a more than trivial role, it is essential that the parser’s coverage and robustness are
extended.

A review of various question answering systems that have participated in the TREC QA track shows
that there are two obvious points where it is advantageous to have access to syntactic information, viz.
in the analysis of the question and in pinpointing the answer in the ranked texts/segments. “Finding the
expected answer type of a natural language question by relying only on the semantics of the question
stem (i.e. What, How), and some bag-of-words approaches is not always possible, since stems are
associated with many different types of answers and shallow syntax (e.g. phrasal parsers) fails to find
the most discriminating concept in the question. The syntactic dependencies between the question
phrases help solve this ambiguity: the answer type is indicated by the question phrase most connected
to other concepts.” (Harabagiu et al. 2001). Syntactic parsing proves even more valuable as requests for
information are not just expressed in the terms of wh-questions, but may take on a range of syntactic
forms (incl. declarative and imperative sentences).

As for pinpointing the answer, a syntactic analysis of texts or segments likely to contain the
answer would help overcome some of the limitations inherent in methods relying solely on word level
information. So far many systems employ some form of window-based scoring method for determining
which answer string is most salient. A 50 or 250 byte window is moved across the texts/segments
holding the candidate answers. At each position a score is computed on the basis of the presence of
desirable words. The window at the position giving the highest total score is returned as most likely to
contain the expected answer (cf. Hovy et al. 2001). One of the drawbacks of this method is that –
because of the sole reliance on information at the word level – it is not possible to recognize

 604

information of the desired type (such as Person or Location). Given the question What does the
Peugeot company manufacture? the XEROX system (Hull 2000) on the basis of the sentence Mr
Longuet said Peugeot’s decision to stop manufacturing bodies for its 504 utility vehicle from the end of
November left the fate of the company in Renault’s hands. returned the following set of possible
answers: {Mr Longuet, decision, bodies, 504 utility vehicle, end, November, fate, Renault, hands}. Had
the system had access to syntactic information such as that the wh-element in the question refers to the
direct object of manufacture, the return of the answer bodies for its 504 utility vehicle would have been
straightforward. Another problem with the window-based scoring method is that it cannot pinpoint the
answer boundaries precisely. This explains the awkward truncation of the answer strings returned. For
example, a typical answer returned by one of the systems to the question What is the name of the rare
neurological disorder with symptoms such as: involuntary movements (tics), swearing, and incoherent
vocalizations (grunts, shouts, etc.)? is as follows: who said she has both Tourette’s Syndrome and.
Syntactic parsing would be helpful in identifying Tourette’s Syndrome as the exact answer.

In the light of what was said and argued above, there is no reason to believe that syntactic parsing
cannot play a role in question answering. It can, not as a substitute for a lexical probabilistic analysis,
but rather in aid of it. The relevant question then is: What information exactly should syntactic parsing
provide? and, related to this question, What requirements does this impose on the parser? In the next
sections I investigate to what extent a wide-coverage parser such as the current TOSCA parser that was
originally developed in the field of corpus linguistics can be of use or what adaptations are necessary.

3. The TOSCA parser

The current TOSCA parser is the latest in a line of parsers that I developed previously for the linguistic
annotation of corpora and which were used in a number of projects including the TOSCA (Tools for
Syntactic Corpus Analysis; Oostdijk 1991) and the ICE (International Corpus of English) projects
(Greenbaum 1992; Oostdijk 2000). The role of the parser in these projects was two-fold: (1) it served to
test the linguistic hypotheses in the underlying formal grammar against the language data in the corpus;
and (2) it was instrumental in annotating the corpus. The annotated corpus in its turn was used as input
for research in English descriptive linguistics. In view of its role and the intended use of the annotated
corpus, the parser was designed to yield for each input string minimally the correct parse in a given
context. Obtaining the correct parse at the risk of over generating thus prevailed over minimizing the
amount of ambiguity. The parser was one of the key components of the TOSCA analysis system (Aarts
et al. 1998), where it would take as input the (manually corrected) result of the part-of-speech tagging.
Through manual intervention the one correct parse was selected from possibly multiple parses.

The parser can best be characterized as a linguistically motivated, rule-based deep syntactic parser
that has been developed for use in an unrestricted domain. The descriptive framework that is used in
the underlying grammar is based on immediate constituency and the rank hierarchy, and in the analyses
constituents are labelled for both the functional role and the categorical realization. See, for example,
Figure 1 which shows the analysis that is obtained for the utterance Mr Longuet said Peugeot's decision
to stop manufacturing bodies for its 504 utility vehicle from the end of November left the fate of the
company in Renault's hands. 1

The present implementation does not require (corrected) part-of-speech tagged input, but in
principle can handle raw text input. The rate of ambiguity has been sharply reduced mostly through the
incorporation of additional linguistic information that was acquired over the years; developments in the
field of AGFL (Affix Grammars over Finite Lattices; Nederhof and Koster 1993) have increased
overall efficiency. Moreover, the current implementation of the AGFL formalism makes it possible to
include a number of heuristics that can be used for handling unknown lexical items and structures.
 Application of this parser in the field of QA throws up questions such as ‘What syntactic relations
are relevant for retrieving information content?’, ‘To what extent is parsing accuracy required for the
task?’, ‘To what extent should the parser be robust?, ‘Can relations and/or attachments be left
unspecified/underspecified?’ and ‘To what extent is a constituency analysis adequate for the present
task? I will turn to each of these questions below.

1 For an explanation of the abbreviations used, see the Appendix.

 605

-:UTT(utt_cat_prop, prop_cat_s)
 PROP:S(s_type_declarative, complementation_motr, finiteness_past, mood_indic,
 voice_active)
 SU:NP(number_sing, person_third, nppo_cat_none)
 NPHD:N(n_type_proper, n_class_other, number_sing) "Mr Longuet"
 V:VP(cat_operator_no_cat_op, complementation_motr, finiteness_past, mood_indic,
 voice_active, number_sing, person_third)
 MVB:LV(complementation_motr, finiteness_past, mood_indic, number_sing,
 person_third) "said"
 OD:CL(cl_type_zero_subordinate, complementation_motr, finiteness_past, mood_indic,
 voice_active)
 SU:NP(number_sing, person_third, nppo_cat_none)
 DT:DTP
 DTCE:NP(NUMBER, person_third, nppo_cat_none)
 NPHD:N(n_type_proper, n_class_other, number_sing, case_gen) "Peugeot's"
 NPHD:N(n_type_common, n_class_other, number_sing) "decision"
 NPPO:CL(cl_type_zero, complementation_motr, finiteness_infin, mood_indic,
 voice_active)
 TO:PRTCL(prtcl_type_to) "to"
 V:VP(cat_operator_no_cat_op, complementation_motr, finiteness_infin,
 mood_indic, voice_active, NUMBER, PERSON)
 MVB:LV(complementation_motr, finiteness_infin, mood_indic, NUMBER, PERSON)
 "stop"
 OD:CL(cl_type_zero_subordinate, complementation_motr, finiteness_prespart,
 mood_indic, voice_active)
 V:VP(cat_operator_no_cat_op, complementation_motr, finiteness_prespart,
 mood_indic, voice_active, NUMBER, PERSON)
 MVB:LV(complementation_motr, finiteness_prespart, mood_indic, NUMBER,
 PERSON) "manufacturing"
 OD:NP(number_plu, person_third, nppo_cat_none)
 NPHD:N(n_type_common, n_class_other, number_plu) "bodies"
 NPPO:PP(prep_wrd_other)
 P:PREP(prep_wrd_other) "for"
 PC:NP(number_sing, person_third, nppo_cat_none)
 DT:DTP
 DTCE:PN(pn_type_possessive, function_pn_dt, NUMBER, person_third)
 "its"
 NPHD:N(n_type_common, n_class_other, number_sing) "504 utility
 vehicle"
 A:PP(prep_wrd_from)
 P:PREP(prep_wrd_from) "from"
 PC:NP(number_sing, person_third, nppo_cat_ajp)
 DT:DTP
 DTCE:ART(NUMBER, definiteness_def) "the"
 NPHD:N(n_type_common, n_class_other, number_sing) "end"
 NPPO:PP(prep_wrd_of)
 P:PREP(prep_wrd_of) "of"
 PC:NP(number_sing, person_third, nppo_cat_none)
 NPHD:N(n_type_proper, n_class_time, number_sing) "November"
 V:VP(cat_operator_no_cat_op, complementation_motr, finiteness_past, mood_indic,
 voice_active, number_sing, person_third)
 MVB:LV(complementation_motr, finiteness_past, mood_indic, number_sing,
 person_third) "left"
 OD:NP(number_sing, person_third, nppo_cat_pp)
 DT:DTP
 DTCE:ART(NUMBER, definiteness_def) "the"
 NPHD:N(n_type_common, n_class_other, number_sing) "fate"
 NPPO:PP(prep_wrd_of)
 P:PREP(prep_wrd_of) "of"
 PC:NP(number_sing, person_third, nppo_cat_none)
 DT:DTP
 DTCE:ART(NUMBER, definiteness_def) "the"
 NPHD:N(n_type_common, n_class_other, number_sing) "company"
 A:PP(prep_wrd_other)
 P:PREP(prep_wrd_other) "in"
 PC:NP(number_sing, person_third, nppo_cat_none)
 DT:DTP
 DTCE:NP(NUMBER, person_third, nppo_cat_none)
 NPHD:N(n_type_proper, n_class_other, number_sing, case_gen) "Renault's"
 NPHD:N(n_type_common, n_class_other, number_plu) "hands"
 PUNC:PM(punc_type_per) "."

Figure 1. Analysis for Mr Longuet said Peugeot's decision to stop manufacturing bodies for its 504

utility vehicle from the end of November left the fate of the company in Renault's hands .

 606

4. Deep syntactic parsing for QA

One of the strong points in the syntactic analyses produced by the TOSCA parser is that a descriptive
framework is used which is based on immediate constituency and the rank hierarchy. Where a shallow
analysis essentially identifies simple phrases in the input and does nothing to structure the analysis
result, the TOSCA type of analysis structures the information in such a fashion that it is immediately
apparent what information belongs together and should be considered at any one time. In this respect
the distinction between clauses and phrases and between phrases and words appears to be essential.
Compare Figures 2 and 3. Figure 2 exemplifies part of a shallow analysis for the sentence Mr Longuet
said Peugeot's decision to stop manufacturing bodies for its 504 utility vehicle from the end of
November left the fate of the company in Renault’s hands. In this type of analysis typically there is no
embedding and no attachment of the prepositional phrases.

PPP VPVP PPNPNP VPNP

Figure 2. Shallow analysis showing flat/linear structure

(Part of) a deep syntactic analysis for the same sentence is exemplified in Figure 3 (cf. Figure 1).
Although a mapping of the syntactic functions onto semantic roles is not entirely trivial, it is feasible to
implement an algorithm by means of which this type of syntactic structure can be mapped onto a
semantic representation. Syntactic function labels for constituents such as subject, object and adverbial
in combination with additional information that is available regarding the type of clause (e.g. active
declarative sentence with unmarked word order) and the type of verb (e.g. action verb, event verb) are
useful in identifying the agent, recipient, location, etc.

V:VP

UTT:CL

SU:NP V:VP OD:CL

SU:NP OD:NP A:PP

Figure 3. Hierarchical structure showing a (clausal) analysis based on immediate constituency
 and the rank hierarchy

While clausal functions play a crucial role in the mapping of the syntactic structure onto a semantic
representation, phrasal functions such as head and modifier are useful since they help identify the key
element in a phrase (cf. Figure 4).

Figure 4. Phrasal structure

NPPO:CLNPHD:N DT:DTP

SU:NP

 607

5. Adaptation of the TOSCA parser for use in QA

Having argued above that there is a role for syntactic analysis in QA and deep syntactic parsing can
contribute to a better performance of QA systems, this section more specifically addresses the question
What adaptations are necessary in order to make the TOSCA parser optimally suited for use in QA?
The discussion focuses on the following points: coverage, accuracy, ambiguity, and robustness.

Coverage
Since the parser will be used to parse the questions and the ranked paragraphs/segments containing
candidate answer strings, wide coverage is required. The TOSCA grammar already covers most
syntactic constructs, including structures that are highly marked and/or relatively infrequent, so that in
this respect few extentions are necessary. There are two areas, however, where adaptation of the parser
in the light of the QA task is definitely required. Thus, additional rules are necessary for the adequate
analysis of non-sentential constructions (incl. headlines and enumerations) that are characteristic of
newspaper/newswire text. At present coverage is also poor in the area of named entities. The parser
lexicon contains only a limited set of proper names and holds no information as to which items denote
for example currencies and weights. In addition, the grammar does very little in the way of
incorporating rules that describe the patterns displayed in names, dates, addresses, amounts and such
like items.

Accuracy and ambiguity
Irrespective of whether the parser is used for the annotation of corpora with an eye to the advancement
of linguistic description or the parser is used in an application such as a QA system, the accuracy
should be as high as possible. While I agree with Hovy et al. (2001:341) that “parsing accuracy is
particularly important for question parsing, because for only one question there may be several answers
in a large document collection”, I also think that parsing accuracy is quite important too for parsing the
segments containing the candidate answer strings, especially when exact answers are required instead
of text snippets containing the answer. In so far as the TOSCA parser at present yields ambiguous
analyses for certain input strings, it is desirable to incorporate additional information in the parser
lexicon from lexical resources such as WordNet (Fellbaum 1998) and FrameNet
(http://www.icsi.berkeley.edu/~framenet). This includes semantic-syntactic information about
collocations and subcategorization which will help to steer the parsing process and further reduce the
degree of ambiguity. For those inputs where the parse result still remains ambiguous experiments are
necessary to investigate the effect of using whatever parse the system generates first (instead of the one
correct parse) and also the effect of collapsing the ambiguous parse trees into one while leaving the
constituent boundaries and/or labels under specified.

Robustness
More than in the context of the linguistic annotation of corpora, a parser that is used with a QA system
must be robust. When used for the annotation of corpora the performance of the parser is usually
monitored by the linguist and failure to analyse a given input is taken as an indication that the input
must be closely studied and possibly the lexicon and/or grammar adapted. For QA systems parse
failures are unacceptable as they tend to block the (automatic) retrieval process.

6. Conclusion

In the present paper I have addressed the question as to whether and, if so, how deep syntactic parsing
as developed for the linguistic annotation of corpora might contribute to improve the overall
performance of question answering systems. I have argued that a wide-coverage deep linguistic parser
such as the TOSCA parser can contribute, especially when it comes to analyzing the question and
pinpointing the answer. Adaptations that are necessary so as to make the parser better suited for use in
QA must be aimed at improving the recognition of named entities and non-sentential constructions, and
increasing robustness. Further research is necessary to determine how best to strike a balance between
granularity and ambiguity in the analyses.

Acknowledgement

Thanks are due to Lou Boves for his comments on an earlier version of this paper.

 608

References

Aarts J, van Halteren H, Oostdijk N 1998 The linguistic annotation of corpora: The TOSCA Analysis
System. International Journal of Corpus Linguistics, 3(2): 189-210.

ARDA/AQUAINT http://www.ic-arda.org/InfoExploit/aquaint/
Atwell E 1996 Comparative evaluation of grammatical annotation models. In Sutcliffe R, Koch H,

McElligott A (eds), Industrial parsing of software manuals. Amsterdam, Rodopi, pp 13-23.
de Boni M 2001 Question answering system architecture.

http://www-users.cs.york.ac.uk/~mdeboni/research/general/general_qa_system.html
de Boni M 2002 QA task Overview. http://www-users.cs.york.ac.uk/~mdeboni/research/general/

trec2002.html
Greenbaum S 1992 A new corpus of English: ICE. In Svartvik J (ed.), Directions in corpus linguistics.

Proceedings of Nobel Symposium 82 Stockholm, 4-8 August 1991. Berlin, New York, Mouton de
Gruyter, pp 171-179.

Fellbaum C (ed.) 1998 WordNet: An electronic lexical database. Cambridge, Mass., MIT Press.
FrameNet. http://www.icsi.berkeley.edu/~framenet.
Harabagiu S, Moldovan D, Paşca M, Mihalcea R, Surdeanu M, Bunescu R, Gîrju R, Rus V, Morărescu

P 2001 Falcon: boosting knowlegde for answer engines.
http://trec.nist.gov/pubs/trec9/t9_proceedings.html

Hovy E, Gerber L, Hermjakob U, Lin C, Ravichandran D 2001 Towards semantics-based answer
pinpointing. In Proceedings of HLT 2001. First International Conference on Human Language
Technology Research. San Francisco, Morgan Kaufmann, pp 339-345.

Hull D 2000 XEROX TREC-8 Question Answering Track Report.
http://trec.nist.gov/pubs/trec8/t8_proceedings.html

Jurafsky D, Martin J (eds.) 2000 Speech and language processing. An introduction to natural language
processing, computational linguistics, and speech recognition. Upper Saddle River, NJ, Prentice
Hall, Pearson.

Lin D 1996 Dependency-based parser evaluation. A study with a software manual corpus. In Sutcliffe
R, Koch H, McElligott A (eds.), Industrial parsing of software manuals. Amsterdam, Rodopi, pp
25-45.

Nederhof M, Koster C 1993 A customized grammar workbench. In Aarts J, de Haan P, Oostdijk N
(eds.), English language corpora: design, analysis and exploitation. Amsterdam, Rodopi, pp 145-
161.

Oostdijk N 1991 Corpus linguistics and the automatic analysis of English. Amsterdam: Rodopi.
Oostdijk N 1996 Using the TOSCA analysis system to analyse a software manual corpus. In Sutcliffe

R, Koch H, McElligott A (eds.), Industrial parsing of software manuals. Amsterdam, Rodopi, pp
179-206.

Oostdijk N 2000 Corpus-based English linguistics at a crossroads. English Studies 81(2): 127-141.
TREC – Text REtrieval Conferences. http://trec.nist.gov/
Voorhees E 2000 The TREC-8 Question Answering Track Report.

http://trec.nist.gov/pubs/trec8/t8_proceedings.html
Voorhees E 2002 The TREC-10 Question Answering Track Report.

http://trec.nist.gov/pubs/trec10/t10_proceedings.html

Appendix

In the example analyses abbreviations were used to denote function and categories. They are explained
below.

Function labels: Category labels:
A adverbial ART article
DT determiner CL clause
DTCE central determiner DTP determiner phrase
MVB main verb LV lexical verb
NPHD head of noun phrase N noun
NPPO noun phrase postmodifier NP noun phrase
OD direct object PM punctuation mark
P preposition PN pronoun
PC prepositional complement PP prepositional phrase
PROP proposition PREP preposition

 609

PUNC punctuation PRTCL particle
SU subject S sentence
TO to infinitive marker UTT utterance
V verb VP verb phrase

 610

	Abstract
	3.The TOSCA parser
	
	Robustness

	Acknowledgement
	References
	
	
	TREC – Text REtrieval Conferences. http://trec.ni

	Appendix

