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Abstract

Stylometry is the study of the computational and mathematical properties of style. The aim of
a stylometrist is to derive stylometrics and models based upon those metrics to quantitatively
gauge stylistic propensities. This paper presents a method of formulating a stylistic distance
function via a weighted ratio of lexical stylometrics, the higher the ratio the more the styles
diverge. The coefficients of the distance function are estimated using Powell’s conjugate
gradient method (Powell, 1964) on a 4 million word corpus of 19th Century literature. The
distance metric proves accurate over 30,000 binary comparisons and rivals the discernment
aptitude of established techniques (Labbé and Labbé, 2001). Previous metrics have suffered
from sample-size dependencies, the metric proposed here is resilient to such bias.

1 Introduction

A distance metric δ is a function of 2 vector parameters with the following properties, all of which
are intuitive when thought of in terms of Euclidean geometry.

non-negativity δ : x y → {z | z ∈ R, z ≥ 0 }
identity δ(x, y) = 0 iffx = y

symmetry δ(x, y) = δ(y, x)
subadditivity δ(x, y) ≤ δ(x, z) + δ(z, y)

A textual distance function operates on linguistic data and although simple by definition, dealing
with language in a statistically valid manner is hard. Language is generally high dimensional,
non-independent, non-identically distributed and dependent on the sample size. Here we deal
with high dimensionality by using frequency spectra, rely on existing statistics to deal with (or
ignore) the non-independent and non-identical distribution problems, and explicitly control for
residual sample-size variation. The extra effort required in forming a distance metric is worth-
while because they not only classify but provide the degree of similarity between two linguistic
samples. This interpretability leads to improved comprehension especially when combined with
other methodologies such as clustering. Typical black-box machine learning techniques do not
provide the transparency needed in a broad range of linguistic applications. Textual distance
functions can be used in many areas including; stylometry, stylistics, stylochronometry, language
acquisition and corpus linguistics; essentially any study where the sampling unit of interest is a
block of text rather than individual words.

1.1 Data

The corpus under study comprises 248 fictional works by 103 authors and totals around 40 million
words. The works range from the late 18th Century to the early 20th Century with most texts
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centred in the 19th Century. The mean number of words per book is approximately 20,000 with
the largest being Frances Burney’s 5 volume 1796 work ‘Camilla: Or, A Picture of Youth’. All
books were taken from the Chadwyck-Healey Literature Collection1.

Distance metrics are calculated using two samples of text, therefore the total number of possi-
ble comparisons can be expressed as a binomial coefficient where n is the number of books in the
corpus and k is 2 due to the comparisons being binary. The ratio of comparisons between same
and different authors depends upon the distribution of authors in the dataset; in this case the num-
ber of different author comparisons will always exceed the number of same author comparisons.
The data are split into three cumulative sets to assess how well the proposed method performs on
smaller training samples. The criteria for observation inclusion are governed by the number of
books that observation’s author has in the collection.

ID min Nb Na Nc

A 1 248 103 30628
B 2 184 39 16836
C 4 140 19 9730

Table 1: dataset and subset characteristics

Table 1 shows attributes for each of the datasets; min is the minimum number of books an author
requires to be included in the sample; Nb is the total number of books; Na is the total number of
unique authors and Nc is the number of binary comparisons where

Nc =
Nb!

2!(Nb − 2)!

In the remainder of this paper, section 2 reviews related work; section 3 deals our methodology;
section 4 describes our initial exploratory analysis on a selection of the most prolific authors in
the corpus (Austen, Dickens, Hardy and Trollope) which leads to the development and evaluation
of the authorship ratio in section 5. Finally we conclude with section 6 and describe possible
areas of future work.

2 Background

The origins of quantitative stylistics are commonly thought to reside with Mendenhall (1887)
when he attempted to find differences in sentence length distributions for works by Bacon, Mar-
lowe and Shakespeare. Although Mendenhall did not work alone, his peers include Mascol (1888)
and Sherman (1888). Yule (1939) was also an early pioneer and used sentence lengths during his
investigation of De Imutatione Christi.

No discussion of stylometry can proceed without mentioning Zipf’s empirical law (Zipf,
1932). Zipf’s law is the most cited example of a quantitative lexical relation and the structure
most parametric stylistic models are based upon. In standard word frequency distribution nota-
tion; N is equal to the number of vocabulary tokens; V is equal to the number of vocabulary
types; Vm is the number of vocabulary types with frequency m; C is a normalising constant and
a is a free parameter which can be estimated but is usually fixed. Zipf’s Law in standard notation
can be expressed as,

Vm =
C

ma
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In English the most frequent word is ‘the’, therefore it commonly has a Vm equal to 1 and a very
highm (m ≈ .07 · V ). Conversely, the words which only occur once, known as ‘hapax legomena’,
have an m equal to 1 and a very high Vm (V1 ≈ V/2) hence the distribution is characterised
by a ‘large number of rare events’. The most frequent vocabulary tokens are usually function
words acting as syntactic glue (articles, pronouns, conjunctions etc.). Zipf’s law implies, on
untransformed axes, distributions of lexical occurrences are characterised by an inverse ‘J’ shape,
this structure is known as a LNRE distribution (Baayen, 2001).

The classic authorship attribution studies are in historically disputed cases such as the origins
of Shakespearean work or determining the most probable author of the unknown Federalist papers
(Mosteller and Wallace, 1964; Fung et al., 2003). Non-traditional applications include the detec-
tion of plagiarism in educational environments (Clough, 2000) and the identification of anony-
mous authors; either on the Internet (de Vel et al., 2001); authors who write under a pseudonym
or even in forensic stylistic cases such as the Derek Bentley trial (McMenamin, 2002). For a
historical perspective on the development of stylometry see Holmes (1998).

2.1 Stylometrics

Style is a latent property of language meaning it cannot be measured directly. The rarity and
regularity of linguistic constructs can be quantified, and they provide an indirect indication of the
underlying stylistic profile. Measures of style are commonly referred to as stylometrics. An ideal
stylometric would capture innate subconscious stylistic attributes unique to a given author and
would transcend all forms of textual variation. In practice no single indicator can measure style
in its entirety. Stylometrics must be compounded to capture the diversity of stylistic expression
and variation is still a pressing problem (Rudman, 1998).

Using the frequency of linguistic constructs is an often applied stylometric method but fre-
quency, by definition, is a function of the sample size. The same is true of the sample probabili-
ties, sometimes referred to as relative frequency, for any feasible text size. Stylometrists have so
much uncontrollable variation to contend with, eliminating as many forms as possible is a prudent
course. Furthermore raw frequency-based metrics lack transparency, interpreting pure frequency
is unwieldy at best, it is wiser to make use of specialised statistics and models.

We selected the stylometrics based on a number of criteria, the most important of which is
sample size independence or having the property of ‘invariance’. Samples of text are naturally
heterogeneously sized so any stylometric which incorporates sample size variation is going to
be a poor choice (Tweedie and Baayen, 1998). Sample sizes can be homogenised if a loss of
information is acceptable but there is no guarantee the bias will be equal just because the sample
size is equal due to the non-random nature of language.

The second criterion, transparency or ‘ease of interpretation’, is important because the com-
prehension of style is surely a stylometrist’s most laudable goal. If stylometrics do not have strong
subject-matter relevance practitioners are blind. The value of a stylometric must correspondence
to some interpretable aspect of an author’s stylistic profile. Understanding what each stylometric
value implies is key to interpreting stylistic idiosyncrasies. Burrows (2003) expressed a simi-
lar sentiment towards opaque classification methods such as neural networks and discriminatory
analysis; “...they lack the transparency so useful for exploring the evidence”.

Finally, stylometric models should seek parsimony. All redundant degrees of freedom need to
be eliminated from consideration otherwise the true source of interest is obscured. An attribution
system ought to strive for absolute lucidity whilst maintaining ontological minimality to reduce
the number of assumptions it makes. So called ‘feature proliferation’ has seen a resurgence of
late, a trend noticed by other researchers (Argamon et al., 2007). Classifying style by considering
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every possible permutation of grammatical minutiae is undoubtedly going to produce good results
but little is learnt in the process. In the words of nominalist logician William of Ockham in
accordance with his eponymous law; “plurality should not be posited without necessity”.

3 Methodology

Two techniques will be used to assess the suitability of our proposed algorithm, intertextual dis-
tance (Labbé and Labbé, 2001; Labbé, 2007) and support vector machines. The intertextual dis-
tance uses the intersection of lexical frequencies as a similarity measure and has proved useful for
exploratory studies but it’s classification ability has not been quantified. Support vector machines
(SVMs) are excellent classifiers but are not interpretable in the statistical sense. For successful
applications of SVMs to authorship attribution see Hirst and Feiguina (2007) or Diederich et al.
(2003). It is hoped the composite distance measure detailed here will hold the middle ground and
attain high classification accuracy whilst providing exploratory capabilities.

All documents were split into words using standard word boundary regular expressions, sen-
tences were parsed using the NLTK (Loper and Bird, 2002) Punkt tokenizer (Kiss and Strunk,
2006). The parametric LNRE models were fitted using Baayen’s lexstat toolkit 2. SVM classi-
fication was performed using libSVM (Chang and Lin, 2001). The intertextual distance and the
non-parametric stylometrics were implemented based upon canonical definitions in the literature.

3.1 Non-parametric statistics

Non-parametric statistics do not make assumptions about the source of data. They are distribution-
free and as a result no unknown values have to be estimated in order to proceed with their cal-
culation. The first non-parametric stylometric, mean sentence length, has a rich history of use
(Mendenhall, 1887; Yule, 1939; Sichel, 1974) and is known to be invariant. Average sentence
length (denoted by M ) is also easy to interpret. How well it segregates authors is a contentious
issue but discrimination aptitude is not of prime importance as classification proficiency can be
synthesised by compounding weak stylometrics into a strong model.

K (Yule, 1944) measures word repeat rates in a sample size independent manner, the higher
the value the more the author repeats words (Equation 1). The i/n term is the sample probability
estimate for token i hence the square of i/n is the probability of sampling the same token twice
(assuming independence). Multiplying the sample probability by Vi, the number of types with to-
ken frequency i, results in the expected value of Vi’s repeat rate. All expected values are summed
and standardised with the sample size.

K = − 1

N
+

N∑
i=0

Vi

(
i

n

)2

(1)

Other constants are very similar (Simpson, 1949; Herdan, 1955) but only K will be considered
here because it was the first to be published and the measure which has gained most traction in
the literature. Besides, including multiple word repeat rate measures would invalidate the notion
of parsimony. Some research has shown K to be an inadequate discriminator on its own (Hoover,
2003) but as part of a system it excels (Smith and Kelly, 2002; Somers and Tweedie, 2003).

3.2 Parametric models

Parametric models make assumptions about the distribution the data are drawn from. As a result
the distribution’s parameters have to be estimated using methods such as maximum likelihood or
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optimisation of a fitness statistic. Usually only a single parameter is of interest; the remaining are
known as nuisance parameters. In this study all parameters are estimated using downhill simplex
minimisation (Nelder and Mead, 1965) with a C1 cost function (Sichel, 1986; Baayen, 2001).
The cost function attempts to match the expected value of selected vocabulary tokens with the
model’s estimates of those tokens. The generalised Zipf model (Orlov, 1983) is a parametric
manifestation of Zip’s law with two free parameters

E[V ] =
Z

log(pZ)

N

N − Z
log(N/Z)

The maximum sample probability p is equal to the frequency of the most common word divided
by the text length. The parameter of interest Z can be interpreted as the minimal text size where
Zipf’s law holds. Z is calculated by extrapolating the sample frequency distribution in accordance
with Zipf’s law, therefore Z remains invariant across varying text lengths.

The final and most complex stylometric is a parameter from the generalised Gauss-Poisson
model (Sichel, 1975). Sichel’s model is a three parameter continuous distribution, where g(π) is
equal to the proportion of words in the population with probability π ± ε for small ε.

g(π) = Cπγ−1exp

{
−π
c
− b2c

4π

}
The normalising constant, C, is a function of the parameters and the modified Bessel function of
the second kind order γ; for more details see Sichel (1975) or Baayen (2001). The γ term is a
shape parameter and traditionally fixed at -0.5 to aid computational tractability although there are
methods to estimate it. The b and c terms are measures of lexical richness linked to the density
decay rates. Smaller values of b and c equate to a larger number of types. Neither b or c is
perfectly invariant but c is preferable as it shows less of a sample size dependency because it is
responsible for the decay rate of the dominant tokens.

4 Exploratory analysis

We began our investigation with a exploratory analysis in order to better understand the measures
described in section 3. Fitting a regression model with the stylometrics as explanatory variables
and a dummy binary variable as the response will help determine the utility of the selected mea-
sures. The response is binomially distributed and equal to 1 for the author of interest and 0 for all
other authors. The model coefficients can be interpreted as the log ratio of each criterion’s ‘affin-
ity’ with a given author. A positive coefficient reflects an increased probability of that variable
being pronounced in the author’s work; a negative coefficient implies the opposite.

Whilst fitting binomial models it became apparent the data were problematic. Some of the
models did not converge due to ‘perfect separation’ in the response. Perfect separation implies
a non-concave likelihood function tending to infinity; therefore the estimation procedure only
finds a maximum when the curve reaches a sufficiently flat area, resulting in extremely inflated
coefficients and standard errors. To remedy this a method of bias-reduced binomial regression
was employed (Firth, 1993), for more details see the brglm R package (Kosmidis, 2008).

Table 2 shows the significant coefficients from the stylometric binomial models (β) and their
corresponding p-values (p). All explanatory variable were transformed via natural logarithms to
ensure effect linearity and homoscedasticity (variance homogeneity). Cells are empty where a
stylometric was far from significant at the 5% level and therefore not critical to the identification
of a given author. The grouping of significant stylometrics is interesting but coincidental; each
author is identified by two stylometrics and each stylometric identifies two authors.
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Austen Dickens Hardy Trollope

M
β . 7.583 −21.369 .
p . 0.02213 0.0088 .

K
β −32.703 . . 23.231
p 0.0221 . . 0.00402

C
β . −7.703 . 7.782
p . 0.00243 . 0.00198

Z
β −5.857 . 7.219 .
p 0.0228 . 0.0272 .

Table 2: Significant stylometrics and their corresponding log-odds

For Dickens theM coefficient is positive which implies his work is characterised by high sentence
densities. The log of M resides in the range [2.7, 3.6] and for each point increase the probability
a work was penned by Dickens increases by a factor of e7.583. C is negative which implies a
decrease in probability by a factor of e−7.703, given that lower values of C are associated with
high vocabulary densities, his work appears lexically rich. Trollope has a positive coefficient for
C and therefore a smaller vocabulary (e7.782). Trollope also has a large K coefficient so his work
typically has a low type-token ratio. Austen’s extremely large negative K coefficient shows her
work is characterised by very low word repeat rates (e−32.703). The magnitude of the value is due
to Austen dominating the lower ranges of K for the authors included in the model; with more
authors the coefficients should stabilise. Austen’s Z coefficient is also negative therefore she has
small expected texts sizes (e−5.857). Hardy’s work is associated with large values of Z (e7.219)
but very small average sentence lengths, for each point increase in M the probability a work was
penned by Hardy decreases by a factor of e−21.369.

Overall, Dickens exhibits the most complex style, Austen and Trollope the simplest and Hardy
resides somewhere in-between. The most interesting finding is the characterisation of each author
by a unique set of stylometric values, with more authors this may not continue but the segregation
in Table 2 bodes well for the formation of a classification system.

5 Classification

In this section we develop the authorship ratio (AR), a method of judging stylistic distance. The
purpose of AR is to provide an interpretable stylistic metric rather than operate as a pure classi-
fication algorithm; but discernment aptitude is key to AR’s success. If AR possesses a high level
of classification accuracy then practitioners can have confidence in the estimated distances.

All stylometrics are standardised to have mean 0 and unit variance to mitigate scaling bias and
normalised using log transformations. Three statistics are used to judge the effectiveness of each
model: accuracy, sensitivity and specificity. Accuracy is the overall success rate, sensitivity is
the accuracy of comparisons between the same author and specificity is the accuracy of different
author comparisons. All classification results presented in this section are the product of stratified
K-fold cross-validation where K = 10. The observations are first split into negative (n) and
positive (p) classes, each class is then partitioned into K subsets. Same author comparisons are
treated as positive cases and different author comparisons as negative cases. The classification
algorithm is validated on a single partition from each of the classes (Vi = pi ∪ ni) and trained on
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the remaining data (Ti = V c
i ). This process repeats for all K validation sets and therefore makes

use of all the data to provide a better estimate of the generalisation error.

5.1 Authorship ratio

For each author a weighted sum of stylometrics is estimated (a linear predictor) where λ repre-
sents the weights or coefficients and X the stylometrics (Equation 2). The λ0 constant acts as the
intercept or scaling term. The ratio of two linear predictors will be equal to 1 for identical works
and diverge from 1 for non-identical works. To ensure the metric adheres to the definition of a
distance measure, 1 is taken away from the absolute value of the ratio; therefore identical texts
will have an authorship ratio (AR) of 0 and non-identical texts will have a larger positive AR
proportional to the difference in the stylometric values. In addition to the stylometrics, a sample
size covariate is included (the λN term) in an effort to control any residual sample size variation.
To ensure symmetry in the metric space it must hold that either Ni ≥ Nj or Nj ≥ Ni for all
comparisons.

ARij = δij =

∣∣∣∣1− λ0 + λ1Ni +
∑n

z=0 λz+2Xiz

λ0 + λ1Nj +
∑n

z=0 λz+2Xjz

∣∣∣∣ (2)

The AR estimation algorithm optimises the coefficients so that the authorship ratio is maximised
for comparisons between texts by different authors and minimised for comparisons between
books by the same author. To form a cost function and measure the classification success rate, a
discrimination boundary must be defined (denoted by α). If the authorship ratio is less than α the
algorithm considers the texts to be penned by the same author, if AR is above or equal to α the
books are considered to be penned by different authors.

max(δij) ≥ α i 6= j

min(δij) < α i = j

The coefficients of the predictors are constant across all works. They are estimated using Pow-
ell’s conjugate gradient method (Powell, 1964). The Nelder-Mead method (Nelder and Mead,
1965) was considered but Powell’s method performed better, perhaps due to the non-linearity of
the search space or the large number of parameters. Faster algorithms are available but they re-
quire derivatives of the function being optimised. In our case the classification function is rather
computationally complex so calculating derivatives is non-trivial.

Powell’s method attempts to minimise the classification error via measured modifications of
the predictor coefficients. The error is normally 1− accuracy but AR will use Matthew’s Corre-
lation Coefficient (Matthews, 1975). Matthew’s Correlation Coefficient (MCC) should perform
better than accuracy alone because it accounts for sensitivity (Equation 3). The class distribution
in the training data is unbalanced so optimising the coefficients based on accuracy alone would
result in an unbalanced classifier.

MCC =
tp× tn− fp× fn√

(tp+ fp)(tp+ fn)(tn+ fp)(tn+ fn)
(3)

In Equation 3, tp represents the number of true positives, fp the number of false positives, tn
the number of true negatives and fn the number of false negatives. An MCC score of 1 demon-
strates perfect classification, 0 is average classification and -1 is perfect misclassification. Pow-
ell’s method minimises a function, to maximise the MCC score we simply minimise -MCC so
that optimal classification occurs when -MCC = -1.
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Table 3 shows the results of AR classification across the three nested datasets defined in Ta-
ble 1. The best results were achieved by setting the discrimination boundary α to 0.5. The com-
plete set of all authors (A) was predicted with 84% accuracy and with 50% sensitivity, given that
over 97% of the cases are negative comparisons the high sensitivity demonstrates the applicability
of MCC to unbalanced classification. The full dataset consists of 30628 comparisons therefore
around 25862 observations were correctly predicted by the algorithm. Most misclassifications
were caused by three factors; short works whereby the author’s stylistic profile did not have time
to converge; temporal variation whereby works penned by the same author spanning large time
periods exhibited dramatically different styles and similarity of stylometric values between dis-
tinct authors. All of these errors could potentially be fixed by introducing addition stylometrics
or specialised models.

A B C

accuracy 84.44 83.48 81.52
sensitivity 50.05 48.33 55.83
specificity 85.16 84.85 83.23

Table 3: Authorship-ratio results

As the number of observations increases the accuracy and specificity improve. The sensitivity
is highest for the smallest sample because the proportion of negative to positive comparisons is
smaller. The sensitivity seems to drop uncharacteristically for dataset B but this may just be due
to random variation. For the complete dataset the 50% sensitivity is acceptable considering only
3% of the sample is composed of positive cases.

5.2 Intertextual distance

The intertextual metric (Labbé and Labbé, 2001) is an established method of judging stylistic
distance, it is essentially a Bray-Curtis distance with the addition of a standardising constant. For
two samples of text i and j of size Ni and Nj where 0 < Ni ≤ Nj and given that Fix and Fjx
represent the frequency of token x in sample i and j respectively, Labbé’s intertextual distance
can be expressed as,

δ(i, j) =

∑∣∣∣Fix − Fjx Ni

Nj

∣∣∣∑
Fix +

∑
Fjx

Ni

Nj

(4)

The Ni/Nj term is present to standardise the frequency of the larger sample to that of the smaller
sample. Labbé (2007) found empirically that this measure was a function of the sample size, this
can be corroborated by considering how sample size increases will affect the value of δ.

The frequency count vectors are a function of the sample size. For any given document of
size Ni it is self-evident that

∑n
x=1 Fix = Ni. Therefore the denominator of Equation (4) is equal

to 2N because the second frequency term is standardised to the sample size of the first. For δ
to be sample size independent the difference between frequencies, the numerator, would have to
remain proportional to 2N . This is extremely unlikely owing to the LNRE property of lexical
distributions and the non-independent nature of word occurrences. To prevent this dependency
Labbé proposed the ‘sliding window’ method (Labbé, 2007).

The sliding window method attempts to remove sample size variation by calculating intertex-
tual distances for fixed sized contiguous blocks and then taking the mean of all blocks to be the
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overall intertextual distance. The idea being that the block mean should be invariant because each
block is equally sized. The block size B is calculated via the greatest common divisor (gcd).

B = gcd(Ni − εi, Nj − εj)

Commonly there is no sufficiently sized gcd for both text lengths and a few characters have to be
removed so that an adequate common divisor can be found (denoted here by ε). Once the block
size is known samples i and j of size Ni and Nj are split into Si and Sj subsamples of the size B.

Si =
Ni − εi
B

Sj =
Nj − εj
B

where Si < Sj

The sliding window intertextual distance is then calculated by summing the non-sliding window
intertextual distances for all possible combinations of blocks and standardising with the total
number of blocks.

∆ij =
1

SiSj

Si∑
x=1

Sj∑
z=1

δ(Bix, Bjz)

WhereBix represents block x from text i andBjz block z from text j. The sliding window method
implicitly assumes that any sample size bias present in two samples will be equal because the size
of the samples is equal.

5.3 Sample size dependencies

We will now explore how the sliding window method and the proposed authorship ratio mitigate
sample size dependencies. The data used for testing was arbitrarily selected from the literary
corpus with the only criterion being that the texts are of a reasonable length, in this case the
compared texts are the complete works of Austen and Dickens. To test for invariance the distance
metrics will be calculated on cumulative subsamples ranging from 10% of the data to 100%. If
the metrics are free of sample size bias they should show minimal variation and if any variation
is exhibited, it should not be systematically dependent on the sample size.

The intertextual distance sliding window method will be calculated in the same manner as
the non-sliding-window method whilst accommodating the mean subsample procedure, i.e. each
cumulative subsample will be split into partitions and the mean of all partitions will be taken as
the intertextual distance for that cumulative subsample.

Figure 1 shows the resulting cumulative subsample plots for both distance metrics. All dis-
tance measures apart from the sample size covariate authorship ratio look to be dependent on the
sample size. Each distance measure’s dependency on the sample size can be quantified using
Spearman’s non-parametric rank correlation coefficient. The null hypothesis of the Spearman
rank test states the population correlation coefficient ρ is equal to 0. A low p-value indicates the
data is unlikely to have occurred under that hypothesis, therefore the data must have come from a
population with a non-zero correlation coefficient.

Table 4 shows that both intertextual distances have significant negative correlation with N .
The authorship ratio shows a significant positive correlation with N but less than both the inter-
textual distances. Clearly the sample size covariate authorship ratio performs best. It shows a
minor non-significant positive correlation with N and the standard deviation is tiny; 3 degrees of
magnitude less than the other authorship ratio, 2 less than the intertextual window and 1 less than
the raw intertextual distance. The standard deviation for the basic authorship ratio is extremely
large so it appears that including a sample size covariate greatly reduces variability.
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Figure 1: Empirical sample size bias of distance metrics for texts by Dickens and Austen

δ ρ p-value std.dev

intertextual -0.89090 0.00138 0.00552
intertextual window -0.95151 0.00001 0.02616
AR 0.78182 0.01072 0.41220
AR sample size 0.28484 0.41710 0.00046

Table 4: Correlation between distance metrics and sample size for texts by Dickens and Austen

5.4 Support vector machines

To compare the discrimination ability of the distance metrics both will be classified with a radial
basis function (RBF) support vector machine (Vapnik, 1999). Support vector machines (SVM)
separate a response variable into two partitions by constructing an n-dimensional feature-space
hyperplane, in this case the partitions will be ‘same author’ and ‘different authors’. SVMs attempt
to maximise the margin between two partitions so that the generalisation error is minimal and
over-fitting is prevented. SVMs excel at classification but besides accuracy and error statistics
they are rather opaque hence the need for a more interpretable stylistic distance function.

In SVM terminology the radial basis function is known as a kernel, the kernel transforms a
non-linear relationship into a linear one (Cortes and Vapnik, 1995) by replacing every support
vector dot product with the kernel function. The support vectors are the observations on the
hyperplane margins. The RBF kernel has a hyperparameter traditionally denoted by γ, it needs to
be estimated to ensure the most optimal accuracy is achieved. Methods of statistical estimation
are too computationally intensive to use with a SVM, instead γ is estimated using a simple grid
search over the likely parameter space using the e1071 R package libSVM bindings.

To aid the SVM with the unbalanced data we specify a prior weight. SVMs make use of
weighting through error penalisation so that misclassifications of the dominant class are consid-
ered less important than misclassifications of the recessive class. The magnitude of the class
weighting is proportional to the magnitude of the class bias within each dataset.
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The SVM classifying the authorship ratio will operate on the individual stylometric components
rather than the distance function itself; primarily because classifying the data twice will produce
bad results but also it will allow us to independently assess the classification power of the stylo-
metrics. The RBF SVM results are shown in Tables 6 and 5, both hyperparameters were estimated
to be 1.

A B C

accuracy 91.52 91.30 91.06
sensitivity 83.73 84.88 91.55
specificity 91.68 81.67 91.61

Table 5: Weighted intertextual distance classi-
fied with RBF SVM

A B C

accuracy 93.82 91.82 90.34
sensitivity 78.42 77.83 84.95
specificity 94.11 92.37 90.72

Table 6: Weighted authorship ratio classified
with RBF SVM

The two distance metrics are similarly accurate but the intertextual distance has higher sensitiv-
ity; although as shown in Section 5.3, the intertextual distance incorporates systematic sample
size bias so the accuracies are inflated. The support vector machine achieves better accuracy than
the native authorship ratio estimation algorithm (Table 3). The SVM’s higher accuracy could be
caused by a range of factors; the AR algorithm may sacrifice classification power for interpretabil-
ity; some of the stylometric classification power may not be exploited by the AR algorithm; or
the SVM could be incorporating sample size bias so the results are inflated.

6 Conclusion and future work

In this paper we have investigated whether is is possible to define a metric that provides an in-
terpretable measure of distance between authorship styles. Out test data consisted of 40 million
words of 19th Century literature. The authorship ratio proposed in this paper proved a good dis-
criminator and was resilient to sample size bias. But it was shown the SVM performed better
when classifying the same data with the same features. Ideally we would like to exploit the geo-
metric elegance and error bounds guarantees of an SVM whilst providing some form of distance
statistic. The raw intertextual distance is much simpler to calculate than the authorship ratio but
heavily dependent on the sample size. Using the sliding window method does not seem to lessen
this dependency, with the Austen and Dickens data the sliding window method actually showed
a stronger correlation with the sample size.

The authorship ratio misclassifications were primarily caused by three types of error; short
samples whereby the author’s stylistic profile did not have time to converge; similarity of sty-
lometrics for distinct authors and stylochronometric development whereby works written by a
single author appear different due to chronological changes in the author’s style.

Some of these errors could be fixed by introducing additional stylometrics, perhaps statistics
that capture non-lexical data such as syntactic metrics (Köhler and Altmann, 2000). Syntactic
stylometrics seem a promising approach because syntax is further removed from content and
closer to subconscious author-specific cognitive behaviour. The low sensitivity of the authorship
ratio is a cause for concern but this is more a function of the class distribution than a specific
weakness in the algorithm. Incorporating some form of prior weighting instead of using the MCC
cost function may improve the low score for unbalanced datasets. Finally, it may be beneficial to
train the distance metric on cumulative samples of data. Instead of treating each text as a single
unit, each text could be partitioned into n cumulative subsamples so that the sample size covariate
is better adjusted to variation in text length.
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Notes
1http://collections.chadwyck.co.uk/home/home_c19f.jsp
2http://www.ualberta.ca/˜baayen/software.html
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