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Abstract

We define a simple, purely surface frequency based measure S(7T', )
which quantifies the similarity of a training text 7" with a test text
t. S can be decomposed into three factors: one depending on the
training text, one depending on the test text, and one nearly constant
residual factor. The slight variations of this near constant allow us to
measure stylistic differences between T" and ¢ with high accuracy. The
defined quantity S is unique among other stylometric measures in that
it uses the full frequency information of all substrings in both texts.
Its applicability for stylometric classifications was tested in a variety
of experiments.

1 Introduction

Stylometry aims at quantifying linguistic style. Style can be understood as
the subtle but regular differences between texts which ideally share language,
genre and topic, but differ with respect to authorship, the gender of the
author or similar parameters.

The present paper develops a new text statistical measure S and uses it
successfully for stylometric classification on a variety of data sets and in the
framework of four different languages. S quantifies how much of a training
text is repeated in a test text. It can be factorised into three independent
parts, two of which describe the dependency on test and training text re-
spectively, and one which is nearly constant. Subtle variations of this near
constant can be used for precisely measuring the stylistic similarity between
test and training text.

S has intriguing theoretical properties and using it for stylometry consti-
tutes a completely new approach to this field. Stylometry usually relies on
a vector description of documents focussing on the distribution of function



words while omitting content words (¢f. Section 2). Contrarily, the compu-
tation of S is based on the frequency of all substrings in both the test text
and the training text.

The paper is arranged as follows. In Section 2, modern approaches to
stylometry are briefly reviewed. Section 3 defines S and motivates this defi-
nition with the help of simple examples. Section 4 discusses three empirical
investigations. Firstly, Section 4.1 describes an introductory experiment run
on data assembled specifically for an authorship attribution contest (Juola,
2004). Secondly, in Section 4.2, experiments from Baroni and Bernardini
(2006) are reproduced. The objective here is to classify texts either as orig-
inal Italian or as translations to Italian. Thirdly, section 4.3 reviews the
famous problem of the twelve disputed federalist papers. I conclude with a
discussion in Section 5.

2 Previous Work

Stylometry as a scientific discipline is more than a hundred years old. The
usual timeline of citations contains the cornerstones Mendenhall (1887), Yule
(1938), and Mosteller and Wallace (1964). Today’s literature on the subject
is abundant. Several reasons for this plethora might exist: firstly, literature
in general is abundant today. Secondly, there is a vivid and growing inter-
est in forensic applications of stylometry. Thirdly, the research question of
stylometry is more clear cut than in other fields of text classification: the
question “who wrote this text?” has, in general, a much more definite answer
than a question like “what is the topic of this text?”.

In what follows, I present a short overview and a classification of the
wealth of ideas existing in stylometry today. This overview shall in no way
be exhaustive, but rather capture the main currents in the stream of publi-
cations.

Most people in stylometry work on tokenised text. There are however
some exceptions to this rule. The authors of (Benedetto, Caglioti and Loreto,
2002a; Baronchelli, Caglioti and Loreto, 2005; Cilibrasi and Vitanyi, 2005)
exploit the characteristics of the standard data zipping algorithm LZ77 (Ziv
and Lempel, 1978) to measure text similarity. Since this algorithm has no
knowledge of tokens or words, their method uses all substrings of the un-
tokenised text!. The data basis of Forsyth (1999) is a (small) subset of

IFierce battles were fought about the appropriateness of this method (Goodman, 2002;



the character n-grams of a text. Khmelev and Tweedie (2002) used markov
chains on the character level for various problems of authorship attribution.

Nearly all existent approaches use the frequency information contained
in their corpora. The only exception I came across is the above mentioned
zip community around Benedetto, Caglioti and Loreto (2002a). To compress
a file, it is not necessary, to know how often a string repeats in a text. Only
the fact of the repetition as such is used by LZ77.

Only a few of the available stylometric methods use syntactic information.
Examples for this minority include Stamatatos, Fakotakis and Kokkinakis
(1999), and Baayen et al. (1996). For the layman, this might seem odd, since
the normal human test person would probably pin down stylistic differences
to higher level features of language use than character n-grams and token
frequencies. Obviously, the reason for our restraint in using such information
is its ongoing invisibility to the computer.

A seemingly unbroken rule of stylometry is the following: everybody who
uses n-gram frequencies in her research presets some fixed n. I found no n
higher than 10 (Keselj etal., 2003).

A very common research practice is the use of vectors as document rep-
resentations®. The dimensions of these vectors are frequencies of unigrams
or n-grams with a small n of word forms or POS tags. Exceptions to this
rule are, on the one hand, the above mentioned zip-branch of approaches,
and, on the other hand, those researchers who develop measures of vocab-
ulary richness. Algorithms of this flavour compress the complete frequency
statistics of a text in one single number (c¢f. Tweedie and Baayen (1998) for
an excellent review).

A near must of stylometric investigations is to exclude content words
from the start. The reason for this is obvious: the use of content words
depends on content, and the content of a text (“topic”) is, by definition, not
covered by stylometry. There are very few exceptions to this rule besides the
generally exceptional zip community. Whenever content bearing words are
not excluded from the start, considerable argumentative effort is undertaken
to show that the results are nevertheless not dependent on them (Baroni and
Bernardini, 2006).

Whatever representation of the data is chosen, a mechanism to classify

Benedetto, Caglioti and Loreto, 2002b; Khmelev and Teahan, 2003; Benedetto, Caglioti
and Loreto, 2003).

2T cannot deny myself the nitpicking remark that maybe no one ever checked the com-
pliance of these representations with the formal definition of a vector.



documents is needed in order to get results. Some examples for this include
neural networks (Tweedie, Singh and Holmes, 1996), principal component
analysis (PCA) (Burrows, 1987; Baayen et al., 1996; Holmes, Robertson and
Paez, 2001), and support vector machines (SVMs) (Diederich et al., 2003;
Fung, 2003; Baroni and Bernardini, 2006).

I conclude this section with a more detailed description of research pre-
sented by Baroni and Bernardini (2006). It is a very appropriate example
for leading research on the field of stylometry and T will repeat its main
experiments in Section 4.2.

Baroni and Bernardini (2006) analyse the subtle regular deviations be-
tween translations to Italian and texts originally written in Italian. They set
up a data set of 813 articles from the high standard Italian geopolitical jour-
nal limes. 569 of these are original Italian, the remaining 244 are translations
to Ttalian from various languages®.

The documents are condensed into vectors whose dimensions are frequen-
cies of unigrams, bigrams and trigrams of word forms, lemmata or POS tags.
The authors test their classification method on a variety of such vector repre-
sentations and of combinations thereof. Classification is carried out by means
of support vector machines (SVMs, for a description c¢f. Scholkopf and Smola
(2002)).

For the task of classifying a test document as translation or original, the
authors report a performance considerably higher than the figure they cite
for human individuals.

With their work, the authors establish empirical backup for the hypothesis
that something like Translationese exists, that is, that there are systematic
deviations between texts originally written in a language and texts trans-
lated into that language (cf. Gellerstam (1986) and follow up literature for a
discussion).

More details of corpus setup and the experiments conducted by Baroni
and Bernardini (2006) will be given in Section 4.2 where main experiments
will be repeated.

3 Definition of S

The stylometric method proposed in this paper violates all common sense
rules of stylometry as described in the previous section, except the one, not

3English, Arabic, French, Spanish, Russian.



to take syntactic information into account.

It makes use of the full frequency information for all substrings in the
training and in the test text, i.e. in terms of character n-grams, n is not
fixed. Up to my knowledge, these data have never been used for stylometric
investigations, presumably because of their extreme size.

Content words are not omitted. No vector representation is involved. No
linguistic knowledge whatsoever enters the computation. The method of clas-
sification is kept very simple and is mostly limited to the simple comparison
of numbers.

In short, the proposed measure S quantifies the extent to which character
strings from the training text are repeated in the test text. The formal
definition of S might sound a bit abstract. In order not to overshadow
the underlying simplicity of the concept with formulas, we present a short
example first.

3.1 An example

Let T' = abrakadabra be the training text. ¢ = abar is the test text. We now
define — step by step — a numeric index S(7, t) which quantifies the similarity
of t and T.

The complete frequency list of all substrings s of T is:

substring s of T' frequency Fr(s) of sin T
a 3
abra, abr, ab, bra, br, b, ra, r 2
all other 1

Now, for every substring s’ of the test text ¢, we look up its frequency
Fr(s') in the training text 7

substring s’ from ¢ frequency Fr(s') of s in T
abar, aba, bar, ba, ar 0
ab 2
a 3
b 2
a 3
r 2




Here Fr(s') is the frequency of s’ in the training corpus 7. Note that
a is counted double, as it occurs twice. The sum of all training frequencies
would seem to be a natural choice for measuring the similarity of the texts
T and t (after appropriate normalisation). Experimental tests disproved
this: for realistic texts, the extremely high frequencies of the very short
strings overshadow the lower but meaningful frequencies of the longer strings.
In order to make frequencies of different order of magnitude comparable,
the summation is not done over the frequencies themselves, but over their
logarithms. Furthermore, since the logarithm of 1 is 0, the logarithm is
applied to Fp(s’) + 1 instead of Fr(s'), otherwise strings of the test corpus
which appear only once in the training corpus would be ignored. Thus we
get:

3log(2+ 1) +2log(5+1)  6.88
4 4

The division by test text length is done in order to get rid of the expectable
proportionality of the sum of logarithms on text length.

The table below gives S(abrakadabra,t) for some other test texts t. It
gives an impression in which way S(7,t) relates to the intuitive concept of
text similarity.

t S(T,t)
abarx 1.38 x does not occur in T' = abrakadabra,
but the length of ¢ is now 5. Thus we
get S(abrakadabra,abarx) = 6.88/5

S(abrakadabra,abar) = =172 (1)

abarxabarx | 1.38 A simple reduplication of ¢ does not
change S.

abra 3.09 A prefix of T

Xyz 0 Nothing repeats.

elanp 0.36 S =log(5+1)/5

3.2 Formal definition
Let T and t be two texts, ¢t having length L. s;,m with 1 <m <n<1Lis
the substring of ¢ running from text position m to n. The similarity index

S(T,t) is defined as:

5(1,1) - Zalo8Frlue) +1) o




where Fr(s,,) is the number of occurrences of s}, , in T'. It follows from
this definition that multiple occurrences of the same character string in ¢ are
counted separately, as is the case with the substrings s}, = s33 = a of t in
the above example.

In realistic applications, the number of substrings of a text quickly gets
very large. We keep this abundance manageable by using the index structure
of suffix trees (Gusfield, 1997). To build this elaborate data structure, the
algorithm of Ukkonen (Ukkonen, 1995) was implemented in c++.

The apparent asymmetry between 7" and ¢ in Definition 2 stems from this
method of handling the immense data pool: first a suffix tree of the training
text is built, functioning as a data base of substring frequencies. Afterwards,
we run through the test text looking up the frequencies of encountered sub-
strings one by one, without access to earlier substrings. Hence we cannot
take logarithms of test file frequencies but only of training file frequencies.

4 Experiments

In the following sections, I will report three experiments exploring the prop-
erties of S. The data set investigated in Section 4.1 was set up in the frame-
work on an authorship attribution contest (Juola, 2004). The task of the
second experiment (4.2) is the discrimination between original Ttalian texts
and translations to Italian as described in Baroni and Bernardini (2006). Sec-
tion 4.3 investigates the authorship of the 12 disputed essays of the famous
federalist papers.

4.1 Authorship attribution with laboratory data

The data used in this first investigation were set up as the training set of an
authorship competition held in 2004 (Juola, 2004). They are very suitable for
a showcase demonstration of the method since the solution is always known
and the data are highly controlled. The data set is split into 13 different
problems — labeled from A to M — simulating different stylometric standard
setups.

The first investigation was done with the data of problem M. It consists
of 48 training files, containing 6 files from each of a set of 8 authors. The
language is Dutch. T concatenated 5 files of author i to be the training corpus
T; and left the 6th as the test file ¢;. Figure 1 shows the similarity values
S(T;,t;) for all combinations of T; and ¢;.
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Figure 1: Pseudocolour representation of the matrix S(7;,¢;) comparing the
training file of author ¢ with the test file of author j. The colour code is given as
a bar on the left. The matrix values range from 17.2 to 19.5. The boxes indicate
maximum values in the vertical direction, while the black dots show horizontal
maxima. The training file lengths are visualised by the thick black lines on the
right. These range from 20289 characters for file Tg to 28133 characters for file 77.

If we assign to each test file ¢; the author ¢ of the training file which has
the highest value of S(7},¢;), we get the assignment visualised by the square
boxes. Nearly all test files would be classified as being written by author 3.
T5 is seemingly most similar to 8 out of 10 test files.

This is partly due to differences in training text length. KEquation 2
corrects for test file length, but not for training file length. It was designed
that way because the sum of logarithms in the numerator of this definition
can be expected to be proportional to the text file length while its dependency
on training file length is unknown at this point!. In any case, S(T',t) should
grow monotonously with the length of 7'

However, this still does not fully account for the domination of training
file T3, since it is not the longest file, this being T7. We get a complementary
picture if we look at the data the other way round and mark, for each training
file T}, which test file ¢; had the highest S(T;, t;) relative to it. These maxima
are indicated by the black dots in the figure. Again we get the result that
one test file (t5) is more similar to most training files than the other test files.

4Recent experiments suggest its proportionality to (L) with the training file length
Ly and b~ 1/5.



The exact reason for the fact that some of the test files are closer to all
training files than the other test files, and vice versa, is not yet known. It
seems as if some of the texts are somewhat more typical Dutch than the
others. Presumably they contain a slightly higher proportion of the already
common elements of Dutch.

As a consequence of these observations, authorship attribution is not
possible by means of the raw values of S(7',¢). It will be necessary to isolate
the parts of S which depend only on T and t separately. These parts must
be split off in order to filter out the fraction of S which hopefully is suitable
for measuring the similarity between both texts.

In order to remove the factor from S(7;,t;) which only depends on T, we
normalise S by averaging over all test files ¢ relative to one training file. I
define the test set normalised similarity index Sies as:

S(E7tj)

Stest(ﬂa tj) = N, (3)

In terms of the matrix visualised in Figure 1, the operation leading from
S(T;,t5) to Siest (T3, ;) is equivalent to dividing each row of the matrix by its
mean. This is shown in the left panel of Figure 2.

If we now reassign to each test file ¢; the author 7 whose training file
T; has the highest Sies:(7;,t;), we get a much better result, shown again
by the square boxes. 7 out of 8 authors are assigned correctly. The black
dots which indicate, for the training file 7;, the test file ¢; with the highest
value of Siest(75,15), did not move, since this maximum is not affected by the
averaging procedure.

This changes if we repeat the normalisation procedure, now averaging
over columns instead of rows. I define the fully normalised similarity index
Sfull<Ti> tj) as:

Sfull(T%; tj) _ ]’il;est (Tza tj) (4)
NLT Z Stest(ﬂ’; tj)

=1

Nr is accordingly the number of training files, here coincidentally the
same as Ny, the number of test files. This operation corresponds to the
division of the columns of the matrix of the left panel in Figure 2. The result
is given in its right panel.
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Figure 2: The effect of normalisation. The left part visualises the matrix of
Figure 1 with the rows being divided by their means (i.e. the test set normalised
similarity index Siest(T5,t;)). The right part shows the left matrix with each col-
umn divided by its mean (i.e. the fully normalised similarity index S, (T5,15))-

Now the diagonal — where the author of the training file and of the test
file are the same — comes out visibly higher than the rest (except for author
7, where the method fails). Figure 3 explicitly shows the distribution of the
64 values for Spuu(T;,t5).

This empirically motivated decomposition can be formalised as:

S(T,t) = ArBi(C + €apa, + f) (5)

Arp is only dependent on the training file 7" and can be identified with the
denominator in Equation 3. B; is a factor only dependent on the test file ¢
and can be identified with the denominator in Equation 4. The third factor
(C' + €dqpa, + f) is equivalent to Sy,u. ar and a; are the authors of 7" and ¢,
and 0g,.q, 1s defined as:

1, far =
5Tt_{0, if ar # a; (6)

Its prefactor € has, in this case, a value close to 0.013. f is a Gaussian noise
component. Here, this Gaussian has a standard deviation of about 0.0035.
The fact that € is considerably larger than the standard deviation oy of f

10
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Figure 3: Distribution of the values of the fully normalised matrix as depicted in
the right part of Figure 2. Matrix fields, where the author of the training file and
the author of the test file are not the same, are depicted in green, otherwise they
are red. Note the extremely small fluctuations. Nevertheless, the file pairs where
the authors match are clearly separated. The symbols C, €, o; are explained in
the text.

makes the separation of authors in the data set of problem A possible. C,
or, and € are added to Figure 3.

4.1.1 Interference with topic related effects

The method, as described above, leaves the text untouched and does not
exclude content words. This inevitably leads to interference with topic based
variation if this parameter is not controlled in the corpora used. Up to now,
this feature did not surface, since the training documents used so far contain
five texts each with different topics, the same topics in each training file T;.
The test files ¢;, on the other, hand also share the same topic.

[ turn now to problem A of the data of Juola (2004) to demonstrate the
topic specific behaviour of Sy,;. For this subset of data, thirteen authors
contributed three essays (in American English) about the same three topics.
Since author 2 did not come up with a paper concerning topic 1, there are
12 - 3 + 2 = 38 files, which I label t4; with 1 <7 < 38.

Figure 4 compares all files t4; in the data set of problem A with each
other. As can easily be seen, the similarity arising from topic identity is

11



larger than the similarity resulting from author identity.

1 4 7 10 13 16 19 22 25 28 31 34 37

1357 9 12 15 18 21 24 27 30 33 36

tai

Figure 4: Analysing Problem A of Juola (2004). All files t 4; are compared with
each other. The fields show the fully normalised similarity index Spyuy(taq,ta;)-
The meaningless diagonal fields Sy, (ta;,%4;) are coloured neutrally. The framed
fields sort together the comparison of all files of one author to all files of another
author. The diagonal fields of these boxes represent comparisons of two files with
the same subject.

Figure 5 makes this relation quantitatively visible. As can be seen,
the shift in Sy, resulting from topic identity is about twice as large as
the shift stemming from authorship identity. However, we will see in Sec-
tions 4.2 and 4.3 that the performance of the method is not disturbed by
these effects if the corpus at hand is known to be rather narrow or balanced
with respect to topic.

4.1.2 Cross validation

I performed cross validation experiments on the problems A, C, D, F, G, I,
K, and M of Juola (2004). The problems B, E, and J were excluded, since
they have identical training sets with other (included) problems. I used only
the training sets, because I could not get hold of the correct classification
of the test files in time. Problems H and L. are missing, since they are too
small.

In each cross validation run, one file from each category® was removed

5In all but one cases the categories were authorship by different authors. In one case

12
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Figure 5: Distribution of the values in the matrix shown in Figure 4. The yellow
histogram is comprised of Spy(tai,ta;) values where the compared files ¢4; and
t 4j share neither subject nor author. The red histogram shows file pair comparisons
where the subjects are identical, but not the author. The green histogram, on the
other hand, shows file pairs with the same author, but not the same subject.

from the files of the problem at hand. The removed files were used as test
file. The test file t; was (re)assigned to the category ¢ which had the highest
value of Sy, (T;,t;). Results are shown in Table 1.

The catastrophic performance on problem G is due to topic effects similar
to the one analysed in Section 4.1.1. In this problem, all files are by the same
author, Edgar Rice Burrows. He wrote series, Tarzan, to given an example.
As a consequence, the thematic similarities of his earlier and later works
completely screen possibly existing stylistic differences.

The Results on the other problems look rather encouraging. Unfortu-
nately they are not fully comparable with the ones given for the original
competition (Juola, 2006), since the test sets were not used.

4.2 Translationese

As mentioned in Section 2, I repeated the main experiments run by Baroni
and Bernardini (2006). The aim of this investigation is to show that — de-
spite its conceptual simplicity — stylometry based on the quantity S is fully
competitive with very elaborate modern methods.

(Problem G) the categories were the age of the author.

13



P N. N, g description

A 13 2 065+0.05 American English essays
c 5 2 1 British English Novels
D 3 3 1 English Plays

F 3 20 0.954+0.16 English letters (¢. 1470)
G 2 3 0 American English novels
I 2 2 1 French novels

K 3 2 067 Serbian-Slavonic texts
M 8 6

0.83 £0.13 Dutch essays

Table 1: The fraction g of correctly identified documents. P is the label of the
problem, N, is the number of categories and N, is the number of cross validation
runs. Details about the corpus can be found in Juola (2006).

In order to make my results comparable with Baroni and Bernardini
(2006), I copied their experimental setup as closely as possible. The data
were given to me by the authors of the mentioned paper.

As described in Section 2, the corpus consists of 813 Italian articles, 569
original Italian texts and 244 translations to Italian. I split the corpus into
16 sections, each made of 15 random original documents and 15 random
translated documents. This left a remainder of 329 original texts and 4
translated texts. The 30-document sections were used in a series of 16-fold
cross-validation experiments; the articles in the remainder were used as part
of the training data in each fold, but never as test data. Thus, within each
fold, the training set contained 229 translated texts and 554 original texts;
the test sets contained 15 translations and 15 originals®.

On the available computer, with its 1.25 gigabyte of working memory, it
is not possible to run the suffix tree programme mentioned in Section 3.2
on more than 8 megabyte of text. This limitation forced a breakup of the
corpus of originals into two chunks. Thus we have three corpora: one corpus
of translations (77r) of 5.7 megabyte and two corpora of originals, one (Tp1)
of approximately 7.6 megabyte and one (Tp2) of approximately 5.5 megabyte.

A given test file t is classified as translated if the fully normalised sim-
ilarity index Sy, was higher relative to the translated corpus 77 than to
the average result for the original corpora, i.e. Spuu(Tr,t) > (Stun(Tor,t) +

6The last paragraph is a close paraphrase of Baroni and Bernardini (2006) with only
minor typos on the numbers corrected.
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Spui(Toz,t))/2. This results in a precision of 0.81£0.09, a recall of 0.8340.11
and an F-score of 0.82 4+ 0.09.

These figures can directly be compared with the results of Baroni and
Bernardini (2006). The authors cite a precision of 0.893, a recall of 0.833,
and, accordingly, an F-score of 0.862. No error margins are given. Thus, the
results of Baroni and Bernardini (2006) are included by the error margins of
the approach presented in the present paper. Baroni and Bernardini (2006)
experimented with a set of twelve different document representations, con-
sisting of unigrams, bigrams and trigrams of word forms, lemmata, and POS
tags. Several of these representations were combined to reach the result cited
above. The approach proposed in the present paper does not have this flex-
ibility and does not use any linguistic knowledge, i.e. works on untokenised
and unlemmatised text. The fact that it can compete so well with Baroni
and Bernardini (2006), is quite encouraging.

Density

0.8 0.9 1.0 11 12

similarity values with and without normalisation

Figure 6: The grey histogram shows the “raw” values of S(T,t) for the Transla-
tionese data set from Baroni and Bernardini (2006). Standard deviation is 0.056.
The shaded histogram displays the test set normalised similarity index Stest(T,1).
Its standard deviation is only slightly lower at 0.045. The black histogram rep-
resents the fully normalised similarity index Sy, (T,t). Its standard deviation is
lowered by an order of magnitude to 0.0068. The x-values of the distribution of
S(T,t) are divided by its mean in order to make it comparable to the two other
distributions.
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Figure 7: This figure shows the data of the black histogram in Figure 6 enlarged.
The shaded histogram counts those instances of Sy, (T',t) for which T" and ¢ both
are translations or originals. The other cases are shown in grey. The crosses give
the mean and the standard deviation. The overlap of the two distributions is
responsible for the roughly twenty percent of misclassifications.

Figures 6 and 7 demonstrate that two opposing properties dominate the
behaviour of Sy,: it is constant at a very high level, while its dependency on
style (e in Equation 5) is sufficiently large to differentiate between translations
and originals. The observed constancy of Sy, might be a very interesting
property of human language texts, especially if recent work on a similar
subject is taken into account (Golcher, to appear). This paper states the
suspected constancy of the level of repetitions in human language texts across
texts from different languages.

It is very important to make sure that the high quality of the results is
not due to topic related effects (¢f. Section 4.1.1): it is not improbable that,
in geopolitic articles translated to Italian, names and places from outside
of Italy dominate, while, in originally Italian articles, Ttalian proper nouns
are more frequent. Baroni and Bernadini provide different representations of
their data which make it possible to check for such effects.

16



I used the following versions of the corpus, which, gradual and in different
ways, take all content out of the text:

full: The full text.

tok: Proper nouns and numerals are replaced by placeholders to circum-
vent the problem mentioned above. The placeholders are numbered
(i.e. NPRI, NPR2, ...). The same placeholder is used for the same
expression within one document, but the counters are reset for each
new document.

mix: Baroni and Bernadini (Baroni and Bernardini, 2006) call this the mized
representation: “in the mixed representation, function words are left in
their inflected wordform, whereas content words are replaced by the
corresponding tags”

mix,rand: Like the mix representation, but the sequence of tokens (i.e.
function words and content word tags) is randomly scrambled.

func: Only function words. The content word tags of the mix representation
are removed.

tag: Only content word tags. The function words of the mix representation
are removed.

tag,rand: Like the tag representation, but the sequence of tokens (i.e. con-
tent word tags) is randomly scrambled.

Figure 8 visualises the resulting F-score for these representations. The
seven representations can be grouped into three categories: full, tok, mix
and func are essentially at the same level of performance, i.e. at 80 percent or
slightly above. tag is significantly lower, but seemingly above chance level”.
The randomised representations mix,rand and tag,rand are at chance level.

These results allow for some conclusions:

e As long as the function words are kept in the text and as long they are
kept in their original sequence, performance stays at its maximum.

e If the token ordering is destroyed, performance is also destroyed.

"Detailed statistical analysis would be necessary to confirm this thoroughly.
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Figure 8: The F-score for the different representations of the limes data as de-
scribed in the text. The vertical lines show the standard deviation over 16 runs of
cross validation.

e Using only content word tags still results in some residual discrimina-
tory power. This is maybe a surprising result.

Thus the experiment assessed that no content dependent effects are respon-
sible for the good performance of the presented approach.

In addition to the [tmes data, Marco Baroni provided me with a similar
data set, the giallist® corpus. It contains 28 texts, of which 10 are transla-
tions and 18 original Italian. The texts are written by 26 different authors,
two authors contributed two texts each. I used the limes corpus as training
data and the giallisti texts as test files to be classified. Again, the original
part of the [imes corpus had to be split into two files T and Tpo, due to
space limitations. Note that the three training corpora now consist of all 813
limes files. As before, a file ¢ was classified as translation if Sy, (77, t) was
larger as the mean (S (To1,t) + Spu(To2,t))/2. Averaging was done over
the 28 giallisti test files.

As a result, 8 out of 10 translations were classified and 12 out of 18 orig-
inals. The test of equal proportions was used to assess statistical significance

80ngoing work by Baroni, Bernardini, Castagnoli, Piccioni and Zanchetta; Giallisti —
authors of crime stories.
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(Walpole and Myers, 1972, pp. 261). It results in a significance level of
a < 0.01.

4.3 The federalist papers

In the two investigations described so far in Sections 4.1 and 4.2, the test set
always contained the same number of files from each category: in the case
of the “laboratory data” in Section 4.1, we had eight test files, one for each
author. In the Translationese experiment in Section 4.2, a test set of thirty
files was used in each run, fifteen originals and fifteen translations. This gave
us the possibility of defining Sy, in a meaningful way such that the style
dependent € of Equation 5 could be isolated.

The averaging procedure must break down, if the “true” categories of the
test corpus are not balanced. A look at the left part of Figure 1 makes this
obvious: let us suppose that the first impression were correct and all test files,
or most of them, had been written by author 3. Then, the normalisation of
the matrix rows would level this natural dominance of the third row down
and the assignment to authors would be random.

The following investigation explores a strategy to avoid this trap. It ad-
dresses the old problem of the federalist papers. These are a series of 85
articles written in 1787/88 in New York. Three authors wrote the articles:
Alexander Hamilton, James Madison, and John Jay. For most of the texts,
authorship is an established fact: Jay wrote 5 of them, Madison wrote 14 of
them alone and 3 in cooperation with Hamilton. Hamilton wrote 51 essays
alone. For the remaining 12 articles, authorship is disputed. But, over the
years, many researches worked on the problem (an incomplete list is Mosteller
and Wallace (1964), Holmes and Forsyth (1995), Fung (2003), Tweedie, Singh
and Holmes (1996), and Khmelev and Tweedie (2002)). If nowadays a stylo-
metric method cannot establish the authorship of Madison for the disputed
essays, it can be considered seriously flawed.

The training corpora Ty and T); consist of the texts known to be written
by either Hamilton or Madison. The test set consists of the 12 disputed
papers. A priori, it is not known if they all were written by Hamilton, all
by Madison, or if they are of mixed authorship. Thus the averaging method
which produced good results in sections 4.1 and 4.2 is not directly applicable.

Instead, I set up a corpus of 100 pseudo test documents 7, (1 < r < 100).
These where chosen at random from the BNC (Burnard, 2000) and cut down
to 35,000 characters each. Now the raw values of S(Ty,t;) and S(Ty,t;) for

19



the 12 disputed texts ¢; are gauged by the mean similarity S(7,7,) of the
pseudo test files relative to Ty and Ths. 1 give the set of the 100 pseudo
test texts 7, the collective name 7. Then the 7 gauged stmilarity index S, is

defined as: S(T.4)
S (Titi) = 1o (7)

2231 S(T,7)

Behind this gauging operation stands the assumption that the mean distance
— how ever it might be defined — between modern English texts of random
subject and our two training corpora should be independent of the style of
Madison or Hamilton. If a test file ¢; is compared with the training corpora,
we expect S;(Ty,t;) and S;(Th,t;) to both be considerably above 1 since
they will both be much closer to this elder form of American English than
the BNC files. But, likewise, we expect S;(T,t;) to have a slightly higher
value if Hamilton is the author and vice versa.

1.35 1.40 1.45
1 1 1

ST )

1.30
1

1.25
1

dashed line: y = x
solid liney = 1.026 x

1.20
1

T T T T T T
1.20 1.25 1.30 1.35 1.40 1.45

Si(Twi 1)

Figure 9: The federalist papers. FEach data point represents the comparison of
one of the disputed papers 6; with the two corpora Ty; and Thy;. The figure shows
the BNC gauged values S;(Tx;,0;) and Sy (Tyz,0;). Texts written by Hamilton
are coloured green, texts by Madison are red. Jay is yellow, and the three coop-
erations between Hamilton and Madison are coloured blue. The disputed papers
are represented by the cyan data points. The Identity S (T, 0:) = S+ (Thri, 0;) is
shown by the dashed line, while the solid line separates the texts of Madison and
Hamilton (with one remaining exception).

To test this hypothesis, the procedure was as follows. For 70 of the
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federalist papers the authorship by either Hamilton or Madison in known.
These files are named 6; (j < 1 < 70), to differentiate them from the 12
disputed essays t;. Now, each of them is, in turn, removed from the training
set and than reattributed to an author. In each of the 70 runs, the reduced
training set was rearranged into two files Tx; and Tyy;. If Hamilton wrote
6, the Madison training set stays unaffected, that is Ty = Ty, while 0, is
missing from T;. Otherwise Ty = Ty and 6; is missing from Tyhs;. The 7
gauged similarity indices S;(Twj,0;) and S-(Thj,0;) are compared in order
to assign an author to ;.

The result can be seen in Figure 9. If the above assumption were correct,
all texts by Hamilton, that is the green data points, should lie below the
dashed line. They do. On the other hand, the texts by Madison should
exclusively lie below the dashed line, and they do not. It seems to be the
case that the Hamilton training corpus is more typical for American English
of its time than it is typical for modern British English. This plausible
assumption could easily introduce the skew in the distribution of S, which
we can observe in Figure 9. However, the line S, (T, 0;) = 1.026- S (T, 0;)
separates the data correctly with only one exception. All disputed files end
up on the Madison side of the line. This matches the results reported in
Fung (2003), Bosch and Smith (1998) and Mosteller and Wallace (1984).

5 Discussion and outlook

In this paper, a novel text statistical measure S(7,t) is defined which func-
tions as a measure of the similarity between a training text 7" and a test text
t. This quantity can be split into a product of three factors: one (A) depen-
dent on T, another (B) dependent on ¢, and one being nearly constant. The
factors depending on training and test text can be interpreted as measuring
the “typicality” of a text, since a high value of A or B is equivalent to a high
similarity index S(7,t). That S indeed measures similarity is guaranteed by
its definition which is directly and solely based on the surface frequencies
of the two texts. Differently from other related measures, S is computed
on grounds of the complete frequency list of all substrings of both corpora.
Most often, stylometry is done by means of statistics which use only a very
small subset of the data actually available, usually the frequencies of function
words or POS tags.

The near constant third factor in S can be used to measure stylistic
differences. This was tested on two problems of authorship attribution
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(4.1 and 4.3) and on the task of separating original Italian documents from
translations (4.2). It was shown that the approach of using S for stylometric
classifications is fully competitive with state of the art methods of stylometry.

Although this paper shows the unique characteristics of S and establishes
a method for using them for stylometric classifications and measurements, a
set of intriguing questions still await their answer.

First and foremost, it is of importance for the feasibility of stable ap-
plications that the impact of the text topic is exactly known and that it is
brought under control.

Furthermore, it could be assessed with more certainty, which elements
are responsible for the discriminatory power of S.

As S(T,t) is defined to date, it is asymmetric in the training and test texts
T and t. This is due to technical restrictions (see the remarks following Equa-
tion 2). In principle, it is easy to come up with symmetric definitions which
might have an even greater discriminatory power. It might be a worthwhile
task to devise an algorithm capable of circumventing the mentioned restric-
tions. Furthermore, it could be helpful to find a parametrisation of .S which
— for example — explicitly incorporates its dependency on training corpus
length. Such a parametrisation would possibly make the normalisation of S,
that is the computation of Sieer, Syun, and Sy, redundant. Similarly, it would
be desirable to have a definition for S(7,¢) — and an algorithm to compute
it —, such that S(7,t) =1if T =1t.

Apart from practical applications, the theoretical implications of the
properties of S deserve a closer look. Its very regular behaviour fits well
with recent research results concerning the level of repetitions in human text
and its suspected constancy (Golcher, to appear). The fact that S uses the
complete surface string statistics might be considered a flaw by many. It
opens the door for the interference of dimensions of text similarity which are
often not wanted to be intermixed with stylometric problems, for example
authorship attribution. On the other hand, it could allow for subtle and
novel investigations into the statistical properties of human text.
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