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1. Introduction 
 
The spectrum of electronic corpora which are analysed within the field of corpus 
linguistics has increased remarkably since the publication of the Brown Corpus 
(Kucera and Francis, 1967). High efforts of digitizing print media or transcription of 
speech as well as the limitations of processing speed and storage space made early 
corpora considerably small in size. With increasing computer performance and 
cheaper disk storage larger corpora such as the British National Corpus (1991–1994, 
~100M words) and the Bank of English Corpus (initiated 1991 by Collins and the 
University of Birmingham, 524M words) were developed. Today, with the emergence 
of the World Wide Web and the general trend towards electronic publishing large 
amounts of text are only few mouse clicks away (Kilgarriff and Grefenstette 2003). 
On the other hand these sources, first and foremost the WWW pose new challenges to 
extraction, processing and corpus compilation (c.f. Lüdeling et al. 2006). Nowadays 
Web based systems for collaborative text production like Wikis invite large 
communities to actively contribute to web content– thus mixing the classic roles of 
author and reader. A prominent example is the online encyclopaedia Wikipedia. 
Beside the tremendous number of articles the high degree of text linkage induced by 
hyperlinks is remarkable (c.f. Mehler 2006, Zlatic et al. 2006). Therefore we use the 
Wikipedia as data basis for a touchstone experiment which is described later in this 
article. 

Whereas for annotated text corpora typically trees or treelike representations 
suffice, other types of corpora demand more sophisticated models. A good example 
for increasing complexity are multi modal data structures which are studied for 
instance in research on alignment in communication (Pickering and Garrod 2004). 
Such approaches of research point towards graph models beyond trees and 
polyhierarchical extensions thereof (Kranstedt et al. 2007). 

The high complexity as well as the sheer size of linguistic resources is a 
continuous challenge to research on accurate representation models as well as 
efficient means to handle such data. In this paper we focus on general graph models 
for representing linguistic data. We introduce a system which allows the creation and 
maintenance of very large graph structures which can be used to represent virtually 
any kind of structured data. 

In the next section we discuss opportunities and drawbacks of general graph 
representations. Section 3 introduces the Graph eXchange Language (GXL) (Holt et 
al. 2006), an XML based language which allows representing graph structures of 
arbitrary complexity. We use the GXL specification as a basis of our work. Section 4 
discusses challenges of large XML based corpora which despite of ever increasing 
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processing power and storage space are still difficult to handle. Section 5 introduces 
HyGraphDB – a system which aims to combine the comfort and high expressiveness 
of GXL with efficient means to handle and operate on large graph structures. 
HyGraphDB is evaluated in section 6 where we use the German distribution of 
Wikipedia as a demanding test case. The touchstone experiment includes an import of 
the entire Wikipedia distribution into a HyGraphDB database, the extraction and 
insertion of the document interlinking as well as a part of speech tagging of all 
articles. Section 7 summarizes our findings and gives a prospect of future work. 
 
 
2. Application Specific Representation Formats  
vs. General Purpose Approaches 
 
With the emergence of new research interests and shifting points of view at data, new 
representation models and formats as well as tools to work thereon have been 
developed. The need to share compiled corpora within growing research communities 
lead to the development of de facto standards which are commonly accepted. 
Especially XML based languages got popular because of comfort means to specify 
customized languages for specific purposes. However special research interests 
inevitably lead to requirements which can not be met by out of the box representation 
formats. To overcome such restrictions extensions of existing formats or entirely new 
developments have to be found. 

General graph based models which abstract from specific applications allow for 
the representation of arbitrary structured data and are open for extensions. Two 
prominent examples are Annotation Graphs (Bird and Liberman 2001) and the 
Linguistic Annotation Framework (Ide and Romary 2004). Furthermore there are 
approaches which rely on general graph description languages (c.f. section 3, Ide 
2007). The key advantage of general graph based approaches is also a major 
drawback since the way how graphs should be used to represent specific data 
structures can hardly be constrained while keeping full flexibility at the same time. It 
is thus left to the user (or programmer) how to interpret the data. On the other hand 
given a graph model (and a representation format) which is expressive enough to 
subsume arbitrary application specific formats, lossless imports and exports can be 
realised and the generic graph representation format can thus help to improve 
interoperability between different applications and proprietary formats by reducing 
the effort of conversion. In this article we focus on an existing XML based language 
for graph representation, namely the Graph eXchange Language (Holt et al. 2006). 
 
 
3. Graph Representation for General Purpose 
 

The Graph eXchange Language (GXL) was initially designed to enhance 
interoperability of tools for reengineering in computer science. However it is intended 
as a graph representation format for general purpose usage and marks the most recent 
as well as most expressive development. The GXL has emerged from the GRAph 
eXchange format (Ebert et al. 1999), the Tuple Attribute Language (Holt 1997) and 
from the format of the PROGRES graph rewriting system (Schürr et al. 1997). The 
development also orients itself on the specifications of the eXtensible Graph Markup 
and Modeling Language (Punin et al. 2001) as well as GraphXML (Herman et al. 
2000). The GXL consequently avoids application specifics and allows to represent 
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typed, attributed, directed, hierarchical hypergraphs: Nodes can be interconnected 
either by binary edges or n-ary relations. Furthermore graph elements such as nodes 
or edges can contain nested sub graphs and thus form hierarchies of arbitrary depth 
and complexity. Attributes can either contain atomic values of common types such as 
strings, float or integer values as well as sets or lists. The following XML code  
demonstrates the graph representation of a sample graph as shown in Figure 1 using 
GXL. 
 
 
1 <?xml version=”1.0” encoding=”UTF−8”?> 
2 <!DOCTYPE gxl SYSTEM ”http://www.gupro.de/GXL/gxl−1.0.dtd”> 
3 <gxl> 
4   <graph id=”Graph1” edgemode=”directed” hypergraph=”true”> 
5     <node id=”A”/> 
6     <node id=”B”/> 
7     <edge id=”EdgeAB” from=”A” to=”B”/> 
8     <rel id=”RelBCD”> 
9       <relend dir=”in” target=”B”/> 
10       <relend dir=”out” target=”C”/> 
11       <relend dir=”out” target=”D”/> 
12     </rel> 
13   </graph> 
14   <graph id=”Graph2” edgemode=”directed” hypergraph=”true”> 
15     <node id=”C”> 
16       <graph id=”Graph3”> 
17         <node id=”D”/> 
18       </graph> 
19     </node> 
20   </graph> 
21 </gxl> 

A B

Graph1 Graph2
EdgeAB

D

Graph3
CRelBCD

 
 
Figure 1: Hypergraph example. 

 
 
4. Challenges of Maintaining Large Graph Structures 
 
The previous section introduced GXL, a XML based language which can be used as 
means to describe arbitrary graph structures. Even though application specific repre-
sentation formats have without question their eligibility, general purpose formats such 
as the GXL can be used as a mediator between different formats. However the broad 
usability also brings a line of drawbacks. Most important weighs the lack of 
knowledge of the data specifics and thus means which would allow a specially 
designed format much more degrees of freedom for access optimization and sparse 
usage of disk space. Such performance issues can usually be neglected when small 
amounts of data, such as manually annotated data are processed. But when it comes to 
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large scale automatic annotations of text corpora down to part of speech tagging XML 
based graph representations tend to explode – compared to the primary data. This 
holds all the more when a graph representation format such as GXL is being used. 

Consider for example the German distribution of Wikipedia, a well-known open 
encyclopaedia based on collaborative text production. As of 27 April 2007 it consists 
of 1,559,123 documents (including Portals, Discussion-Pages etc.). The XML dump 
of the database offered by the Wikipedia Foundation measures about 4.6 GB. 
However the underlying schema only supports explicit annotation of basic meta data 
such as document title, timestamp of last contribution and the username or IP-address 
of the contributor. The aspects which are interesting from a linguistic perspective, 
such as document interlinking, section structure and not to mention the logical 
document structure are hidden in the document sources which are stored as a string 
node along with each document. Parsing and making this information explicit will 
greatly increase disk space usage (as section 6 will show 134 GB for document 
interlinking and tagged articles alone). How can such amounts of data be processed in 
feasible time? 

Assuming the XML representation is not going to be revised, there are means 
which allow relatively good access performance anyway. SAX Parser 
implementations such as Xerces2 allow for fast sequential parsing of XML 
documents. Along with separate indexes performance can further be improved: If the 
byte offset of desired data is known, retrieval can be performed with almost constant 
time complexity (i.e. irrespective of the number of documents stored). Consider for 
example the retrieval of a document by its title. The index necessary to quickly fetch 
the document from the XML file would have to map from the document title to the 
corresponding byte offset. Then the SAX Parser can start at that location and only 
needs to parse the relevant part (i.e. not the entire file from the beginning). This 
principle is widely used and can be applied to virtually all kinds of retrieval tasks. 

A major drawback of the approach described above is that the data is assumed 
to be static. Edit operations on an XML file are very costly to implement when data is 
to be inserted or removed. Furthermore the indexes are rendered out of date and need 
to be rebuilt. So in case of dynamic data structures an alternative solution has to be 
found. 

An obvious option to manage dynamic XML documents are XML capable 
Database Management Systems such as Tamino, Oracle or eXist. Equivalent to 
“traditional” relational DBMS they offer concurrent access, transactions, an 
expressive query language (i.e. XQuery) and can manage any kind of XML document 
to which a valid schema or DTD exists. Sadly our tests on large GXL documents 
showed that these systems do not scale well. Often the initial import of a document 
takes unacceptably long or fails completely. In practice therefore large documents are 
sometimes split up into logically closed units (e.g. at document level) and inserted 
separately. 

A further principal bottleneck is the access via a query language. On the one 
hand it offers high expressiveness which comes in handy when complex retrieval 
tasks have to be performed. On the other hand massive edit operations, for example 
the insertion of millions of nodes and edges into a GXL document via XQuery include 
a considerably large overhead for parsing and interpreting the query statements. 
Furthermore even though a full fledged query language is an elegant way to formulate 
retrieval tasks, one is fully dependent on how the query processor computes the result. 
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A query processor is (ideally) designed to answer a broad spectrum of typical tasks as 
efficient as possible. If however a certain type of query is not well supported there are 
little options left to influence performance. 

Our approach aims at representing and handling solely documents which 
conform to the Graph eXchange Language. By restricting ourselves to one specific 
schema we can tackle some of the bottlenecks of general purpose XML DBMS by 
optimizing all access methods for manipulating and maintaining graph structures. The 
concept and the implementation of the architecture, the HyGraphDB, is described in 
the next section. Section 6 examines by a series of touchstone experiments based on 
the German distribution of the Wikipedia in how far the HyGraphDB System can be 
used for large scale graph structures – and which aspects need further work. 

 
 

5. HyGraphDB 
 
So far we have put emphasis on XML based languages for representing graph 
structures, namely the Graph eXchange Language which has the highest degree of 
expressiveness. Compared to binary formats XML documents tend to be significantly 
larger and somewhat “wordy”. Furthermore, as we have discussed in section 4, there 
are certain drawbacks regarding maintenance and manipulation. But despite the 
drawbacks XML has significantly increased interoperability between applications and 
a world without XML is unthinkable today. HyGraphDB aims to bridge the gap 
between GXL based graph representation and efficient means to manipulate and 
access the data. HyGraphDB is developed within the SFB 673 “Alignment in 
Communication”3 at Bielefeld University which is funded by the German Research 
Foundation. 

HyGraphDB is a programming library for C++ and Java (via Java Native 
Interface). It offers programmers comfort means to develop applications which work 
on graph structures without having to bother about the details of the physical storage, 
concurrency and transactions. Graph structures can either be imported as GXL files 
(or one of the import filters included so far) or created from scratch within the 
database using intuitive functions like add_graph, add_node etc. Lossless exports 
back to GXL, as well as to various other formats are supported. HyGraphDB itself 
relies on the BerkeleyDB library which is introduced in the next section. Section 5.2 
will then introduce the architecture of HyGraphDB. 
 
 
5.1 BerkeleyDB 
 

BerkeleyDB is an embedded database library written in C which has initially 
been developed at the University of California, Berkeley for use in the operating 
system BSD. An integration within Netscape lead to the foundation of Sleepycat 
Software which was eventually acquired by Oracle in 2006. In contrast to well known 
Database Management Systems like MySQL or DB2 BerkeleyDB is not a system 
which runs out of the box. It can rather be understood as a programming interface 
which is intended to be used by programmers who have the need to efficiently 
manage their data without rewriting DBMS-typical functionalities like transactions, 
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locking and physical storage from scratch. So BerkeleyDB can be best thought of as a 
modular Toolbox which allows realising highly adaptable storage systems.  

Figure 2 shows the schematic architecture of BerkeleyDB. 
 
 

 
 
Figure 2: Architecture of BerkeleyDB (Oracle 2006). 
 
 

BerkeleyDB supports data to be stored in a flat database model or more 
technically speaking: key/value pairs of arbitrary byte arrays. The question how these 
byte arrays should be used is entirely left to the programmer as is the configuration of 
the system modules. The latter includes choices like B-Trees vs. Hashes for data 
storage, how the physical page and cache sizes should be set and the implementation 
of sorting functions to order the records. A powerful feature of BerkeleyDB marks the 
possibility to write custom indexes to speed up retrieval tasks. This is achieved by 
writing indexing functions that select which database records, and which bits of 
information thereof should be indexed. That way it is quite easy to write, for example, 
an index which allows retrieving all nodes of a certain out degree. Summarizing it can 
be stated that the high degrees of freedom in system configuration are very useful to 
adapt BerkeleyDB for the specific data at hand – as in our case the representation of 
graph structures. 

 
 

5.2 Architecture of HyGraphDB 
 
Programmers interact with graph structures managed by HyGraphDB via a C++ 
Application Programming Interface. From the user perspective it is the central 
component of the architecture which is shown in Figure 3. It offers all functions 
necessary to create, alter and browse attributed and typed hierarchical hypergraph 
structures conforming to the GXL specification. More precisely: an extension of the 
GXL is used internally which allows for denser representation of trees by allowing 
nodes to immediately have ordered nodes as children. In terms of “pure” GXL a tree 
would have to be represented by explicitly including the edges. In order to allow the 
integration of HyGraphDB into Java based applications and client/server systems also 
a Java API is included and connected via the Java Native Interface (JNI). 
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Figure 3: Architecture of HyGraphDB. 
 
 

Each edit or retrieval operation is automatically protected by an ACID-
Transaction (Atomicity, Consistency, Isolation and Durability) to ensure data integrity 
in case of failure or concurrent access. Furthermore programmers can encapsulate a 
sequence of access operations into one transaction by beginning and committing a 
transaction manually. This functionality is internally realised by adapting the 
BerkeleyDB transaction mechanisms for graph editing. The transaction subsystem can 
also be switched off entirely if desired to increase throughput. This can be useful for 
initial imports of large GXL files. Once the file is imported the transaction 
mechanisms can be switched on again to safely allow multi user access and editing. 

Graph elements (i.e. graphs, nodes, binary edges and relations) as well as 
attributes and values can either be retrieved by using corresponding get-functions or 
via a query on an index database. The latter returns a list of all data objects which 
match the specific query. HyGraphDB offers a set of default indexes which can be 
used, as for example string values or graph elements of a specific type. That way a 
graph structure which represents a logical document structure for example, can easily 
be searched for all instances of a specific lemma. This scenario is demonstrated in the 
evaluations of section 6. Beside the default indexes it is also possible to implement 
custom indexes by writing a corresponding C++ function. 

As already mentioned HyGraphDB relies on BerkeleyDB to store the data and 
support DBMS functionalities like transactions and locking. Since BerkeleyDB only 
supports a flat database model an (internal) mapping from graph structures to 
key/value pairs of byte arrays has to be performed. This is done by the Graph-Element 
CODEC layer which encodes/decodes each graph element, attribute and value into a 
database record and back. In order to save disk space we have developed a record 
level compression algorithm which is integrated into the CODEC-layer as well. 

Beside the core API an increasing number of service modules is being 
developed. Beside the Graph eXchange Language the storage formats of some well 
known annotation tools are supported, namely ANVIL, ELAN, EXMERaLDA and 
PRAAT (see Rohlfing et al. 2006 for a survey). Furthermore an import filter for 
Wikipedia XML dumps has been integrated. The latest addition is the integration of a 
POS-Tagger which has been developed by Ulli Waltinger at Bielefeld University 
(www.scientific-workplace.org) to allow programmers seamless POS-tagging within 
the database. The current development aims at the development and integration of a 
statistics toolbox to analyse the graph structures stored within the Database. 
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6. Evaluation 
 
In this section we describe a touchstone experiment in order to examine how well 
HyGraphDB scales on large graph structures. We choose the German distribution of 
Wikipedia of 27 April 2007 as a test case. Because of the large number of documents 
as well as the high degree of document linkage the Wikipedia is a good candidate to 
explore the capabilities and limits of HyGraphDB. 

The system configuration which mainly concerns BerkeleyDB is set as 
following: Throughout the experiment transactions are switched off. Furthermore the 
HyGraphDB is configured to maintain an index database to enhance queries for typed 
string attributes. The primary database is configured to store its data as a B-Tree 
whereas the string index database shall store its data as a Hashtable. The maximum 
cache size is set to 8 MB. 
 
 
6.1 Initial Import 
 
In order to get started we need initial data to work on. The MediaWiki Foundation 
offers XML dumps of its databases which can be downloaded4 freely. The dumps 
come in different flavours which vary in how far they cover documents and meta data. 
We pick the variant “pages-meta-current” which includes all documents in their latest 
revision. The 4.6 GB (4,934,453,894 Bytes) of XML code contain 1,559,123 
documents of which 997,494 are articles. Each document is annotated with its title, 
information about the latest contribution and most important the MediaWiki source 
code which is stored within a single string node per document. 

The task of the initial import via the HyGraphDB API is to create a graph which 
contains all documents as nodes. The document nodes are typed according to the 
Wikipedia specific namespace they belong to (e.g. article, category, image and alike). 
Furthermore each node is attributed by the title, ID and content. This procedures takes 
18.9 min (1,139 s) and consumes 5.6 GB (6,012,350,464 Bytes) of disk space for the 
primary database and about the same size (5,913,051,136 Bytes) for the index 
database. The ratio of the size of the primary database file to the imported XML file is 
about 1.22. 

Internally all information about a graph element is stored in one record (e.g. IDs 
of parent element and children, connections, typing etc.). This approach saves 
retrieval time and storage space compared to alternative approaches where the data 
fields are distributed over several BerkeleyDB databases (or tables in terms of 
relational database models). The drawback is that the update performance of a graph 
element has linear time complexity when connections or children are added: Each 
time a reference to a child or a connection is added, the entire record must be read and 
rewritten. In practice this behaviour is acceptable and the benefits of improved 
retrieval times and low memory usage overweigh. However there are application 
scenarios where hot spots may occur which significantly decrease overall 
performance. In case of the creation of the document graph it is the very graph 
element: During the insertions the record of the graph element has to be rewritten as 
often as document nodes exist. Given 1,559,123 documents and an (uncompressed) 
space usage of 64 Bit per child reference this sums up to 11.9 MB. To avoid this, the 
document nodes are not added to the document graph directly but to a set of 1,000 
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nodes which serve as hubs to better distribute the number of children per element. 
Because of the element typing this solution does not affect the semantics of the 
representation essentially. 
 
 
6.2 Extraction and Insertion of Document Linkage 
 
After the initial import we basically have a graph with a set of isolated document 
nodes. The next step is to compute the linkage between the documents. The link 
information is hidden in the document source code which has been stored as string 
attributes of the document nodes as part of the import. Therefore the sources of each 
document have to be parsed, the contained link information extracted and the binary 
edges to the specific target document nodes to be inserted. Internally not only the 
edges are inserted but the connected nodes also need to be updated. Since the 
information of the target node may be located virtually at any location within the 
primary database this procedure is a first test for the lookup performance of graph 
elements via keys through the internal B-Tree. 

The task takes 2.96 hours (10,641 s) to compute. The representation of the 
linkage within the database consumes additional 3,1GB (3,300,659,200 Bytes) 
compared to the initial import. This means an average memory usage of 129.2 Bytes 
per inserted edge which appears to be quite a lot. A good part of this amount is not 
consumed by the record data (i.e. user data) but by B-Tree overhead which 
BerkeleyDB uses for storage. A Hashmap would have been more space efficient in 
this case but at cost of less throughput during insertion and browsing through the 
graph structures. 

How does the throughput of the system in terms of processed links develop over 
time?  

Figure 4 shows the number of extracted and inserted links per ms over the 
number of processed documents. The throughput appears to be relatively stable, even 
though a slight decrease can be observed. This decrease is likely due to the massive 
updates of the database records which represent the connected nodes: Each time a 
node is connected by another edge or relation the respective record is updated and 
extended by a few bytes to store linkage information. With an increasing number of 
connections per node the time needed to update the record increases slightly so the 
overall throughput drops respectively. However regarding the overall performance in 
context of 25,542,909 links being inserted it is acceptable. 
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Figure 4: Processed links/ms over the number of parsed documents. 

 
 
6.3 Part of Speech Tagging 
 
At this point the database contains a graph of highly interconnected document nodes. 
However the document structures are still hidden in the “flat” string attributes which 
store the documents contents. Therefore the next, and certainly most demanding step 
of the experiment is to perform a part of speech tagging in the HyGraphDB graph 
database and to consequently store the resulting document structures as a typed and 
attributed graphs. The document graphs are stored as children of their corresponding 
document nodes. Each logical element, from headings and paragraphs over sentences 
down to token level is explicitly represented by a typed node (see Figure 5 for an 
example). The word form and the lemma of each token node are stored as typed string 
attributes. We restrict the task to articles (i.e. 997,494 documents are processed, 
skipping discussion pages etc.). 

 
Figure 5: Graph representation of Wikipedia (example). 
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The overall process of tagging takes 31.1 hours (112,038s) which marks an 
average processing time of 0.112s per article. Figure 6 shows the throughput of the 
tagging and LDS tree creation by processed characters/ms over the number of 
processed documents. The plot shows an overall constant behaviour. Compared to the 
size of the primary database of the linked documents additional 75.8 GB 
(81,435,684,864 Bytes) are needed as well as additional 8.2 GB (8,816,619,520 
Bytes) for the index database. This leads to a total of 85 GB in the primary database 
as well as 14 GB in the index database to store the German distribution of Wikipedia 
with complete linkage and POS-tagged articles as a graph structure. 

 

 
Figure 6: Processed characters/ms over number of parsed documents. 

 

6.4 Rank Frequency Distribution of Document In/Out Degrees 
 
Now with the Wikipedia being imported, the link structure extracted and the LDS 
annotated the subsequent tests aim at data analysis. The first task is to compute the 
rank degree distribution of the in/out degrees of the document nodes. In order to 
complete this task each node of the document graph has to be inspected and the 
information about connected edges to be extracted. 

The task takes 2,460s (i.e. 1.58 ms/document) to compute the distributions. 
Figure 7 shows a log-log plot of the distributions – distinguished into total degree 
(solid line), in degree (dotted line) and out degree (dashed line). 
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Figure 7: Distribution of document node degrees. 

 
 
6.5 Rank Frequency Distribution of Lemmas 
 
In the next step of the evaluation experiment the rank frequency distribution of all 
lemmas within the graph database is computed. This is accomplished by iterating over 
all entries of the primary database (using a database cursor) and fetching out all 
attribute elements which represent a lemma. Theoretically it would be more efficient 
to iterate over the index database which solely contains references to the string 
attributes (among others the desired lemmas). However due to the internal storing 
techniques of BerkeleyDB and their configuration via HyGraphDB in its current state 
it is faster to accomplish the task via the primary database: A database cursor which 
iterates over the primary database achieves a throughput of ~24 MB/s whereas a 
cursor over the index database can only read at about 700 KB/s. 

The task takes 61.3 minutes (3,676s) to complete. The log-log plot of the lemma 
frequencies as shown in Figure 8 reveals a power law like distribution. Other than 
expected by Mandelbrot we observe a very good fitting in terms of Zipfs first law 
(Tuldava 1998). 
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Figure 8: Distribution of lemmas. 

 
 
6.6 Index Based Query for Lemmas 
 
In this section we test the performance of index based queries. More precisely, we are 
interested in how well queries for all instances of a specific lemma scale with their 
frequency. The previous experiment already returned the rank frequency distribution 
of lemmas. Based on this distribution we pick sample lemmas with a frequency 
according to a power of two (or as close as possible to a power of two) up to the most 
frequent lemma “der” which appears 21,523,092 times. Then we perform index based 
queries in order to find all instances and measure the time needed. 

 
Figure 9: Query performance. 

 
 

The log-log plot of the query times needed to retrieve all the instances of a 
selected lemma (see Figure 9) demonstrates a power law behaviour (with a positive 
exponent). This means good retrieval performance for most cases – on the other hand 
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the retrieval time increases according to a power law and, thus, significantly, in the 
case of the most frequent lemmas. Therefore, retrieval tasks which require the lookup 
of a large number of lemmas better iterate sequentially over the primary database as 
done in the previous step rather than to look up the lemma occurrences via the index.  

 
 

6.7 Export 
 
To conclude the line of experiments we perform an export of the entire graph 
structure within the database into a HGXL document, a GXL extension which allows 
for a more compact representation of trees. The export measures 134 GB 
(143,507,923,859 Bytes) and thus exceeds the size of the database file (85 GB) by far. 
The export procedure took 28.66 hours (103,176 s) which marks an average 
throughput of 1.33 MB/s. Apparently the export function needs further improvement. 
 
 
7. Conclusion 
 
The article introduced HyGraphDB, a system which allows the representation and 
handling of complex and large hypergraph structures. The evaluation experiments 
showed that the approach can also be used for large data quantities such as Wikipedia. 
However the tests also revealed aspects which need further improvement. This 
regards especially graph elements with a very high number of children or connections 
which can have a critical impact on performance as discussed in section 6.1. 
Furthermore the configuration of the index databases needs further evaluation in order 
to achieve higher throughput. 

Since HyGraphDB is still under development it is not yet freely available. 
However researchers are welcome to use HyGraphDB via a web-based corpus 
management system. In the near future, the system will offer guests access to corpora 
made public by the SFB 673 and will also offer other resources as, for example, 
annotated Wikipedia releases.  
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