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This paper addresses the related issues of statistical analysis of text corpora and of intuitively-
accessible representation of the results of such analysis, with reference to the Newcastle-Poitiers
Electronic Corpus of Tyneside English (NPECTE) project. It proposes topographic mapping as a tool
for analysis and visualization of the NPECTE corpus, and isin three main parts. Thefirst gives a brief
account of the NPECTE project, the second explains the nature of topographic mapping and the
motivation for its use, and the third gives an example of how topographic mapping can beimplemented
using the Self-Organizing Map artificial neural network architecture.

1. The NPECTE project
The NPECTE project is based on two separate corpora of recorded speech:

(i) Theearlier of thetwo corporawas gathered during the Tyneside Linguistic Survey (TLS) (Strang
1968, Pdlowe 1972) in the late 1960s, and consists of 86 |oosaly-structured 30-minute interviews.
The informants were drawn from a stratified random sample of Gateshead in North-East England,
and were equally divided among various social class groupings of male and femal e speakers, with
young, middle, and old-aged cohorts. Some transcription and analysiswas done on thismaterial at
the time, but little of it was published, and work on it languished until 1995, when Joan Beal of
DELLS secured funding from the Catherine Cookson Foundation to salvage the original reel-to-
red tapes to audio cassette format and to catalogue and archive the cassettes. This material isnow
housed in the Catherine Cookson Archive of Tyneside and Northumbrian Dialect in the
Department of English Literary and Linguistic Studies (DELLS), University of Newcastle upon
Tyne

(i) The more recent corpus was collected in the Tyneside area in 1994 for an ESRC-funded project
‘Phonological Variation and Change in Contemporary Spoken English’ (PVC). This data is in the
form of 18 DAT tapes, each of which averages 60 minutes in length. Dyads of friends or relatives
were encouraged to converse freely with minimal interference from the fieldworker, and
informants were again equally divided between various social class groupings of male and female
speakers in young, middle, and old-age cohorts. This material is housed in the Department of
Speech, University of Newcastle upon Tyne;

Recently, an AHRB grant was awarded under the Resource Enhancement Scheme to combine the
TLS and PVC collections into a single corpus and to make it available to the research community in a
variety of formats: digitised sound, phonetic transcription, standard orthographic transcription, and
various levels of tagged text, all aligned.

2. Topographic mapping and its application to NPECTE

a) Topographic mapping

The aim of topographic mapping is to represent relationships among data items of arbitrary
dimensionalityn as relative distance in somedimensional space, wheme< n. In practice, it is used
in applications where there is a large number of high-dimensional data items, and the interrelationships
of the dimensions are not obvious: thetalitems are typically represented as a set of lemgéad-
valued vectors V = {§ w...Vv), and these vectors are mapped to points on a 2-dimensional surface
such that the degree of similarity among ¥his represented as relative distance among points on the
surface.

b) Motivation and application to NPECTE

Corpus analysis is often concerned to discover regularities in the interrelationships of certain
features of interest in the data — correlations of phonetic or graphemic features, for example, or of such
things as social class, age, gender and geography with aspects of linguistic usage. Cluster analysis
(Everitt 1993) has been widely andcsessfully used for this purpose (Manning and Schiitze 1999),
and topographic mapping is in fact a variety of cluster analysis. Its chief advantage over standard
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cluster analysis techniques is the intuitive accessibility with which analytical results can be displayed:
projection of a large, high-dimensional data set onto a two-dimensional surface gives an easily-
interpretable spatial map of the data’s structure.

With regard to the application of topographic mapping to the NCEPTE corpus in particular, the
project’'s aim is not only to create an electronic resource, but to make that resource the basis of
analytical research projects. We are therefore developing software tools to supplement those generally
used in corpus analysis, and topographic mapping is the first of these.

3. Implementation of topographic mapping using the SOM ar chitecture

There are several ways of implementing topographic mapping, that is, of forming two-
dimensional projections of data distributions in high-dimensional spaces: principal component analysis
(Jolliffe 1986, Everitt 1993), multidimensional scaling (Borg and Groenen 1997, Everitt 1993), and
self-organizing mapsSOM) (Kohonen 1995). This paper adopts the last of these because SOMs have
been successfully used in natural language corpus processing, and the relevant work provides a good
basis for development of the applications required for the NPECTE. This section briefly describes the
SOM architecture, then gives pointers to current agtios ofSOM in processing of textual corpora,
and finally presents an example of ho8@M can be used in analysis of corpora like the NPECTE.

a) SOM

The self-organizing map, also known as the Kohonen net after its inventds;dsnensional
surface of processing units, whéres usually 2 Assogated with each unit is a set of connections from
an input buffer such that, for a buffer of lengiththere aren connections per unit (for clarity, only
sample connections are shown in Figure 1):
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Figure 1: A self-organizing map.

Given a set V of input vectors of lengthsuch a net can, using the SOM training algorithm, learn
to approximate the similarity relations among thell V in n-dimensional space on the two-
dimensional surface of processing units. After training is complete, eachpfishessociated with a
specific unity; in the sense that it activatgsnore strongly than any other; when the activations for all
the v; are plotted on the unit surface, the distances among activated units represent the similarity
relations in the input vector space. Details of the network training algorithm can be found in most
textbooks on artifi@l neural networks (for example Haykin 1999, Rojas 1996); the standard reference
is Kohonen 1995.

b) SOM and corpus analysis

SOMs have found apphtion in a wide range of disciplines (Kohonen 1995, chapter 7). In natural
language processing (Kohonen 1995 pp 237-249, 301; Honkela 1997), the main application to date has
been in the classification of texts in large document collections. In particular, Kohonen and his research
group have developed WEBSOM (Kohoretral 2000, Kaskiet al 1998, Lagu®t al 1999), a system
that has successfully classified over one million web documents on the basis of their lexical content.
WEBSOM underlies development of the NPECTE-specific analytical tool being described here.

c) Example
Assume the existence of a phonalliztranscribed spoken corpus, like NPECTE, consisting of a

fairly large number of interviews, each labelled for region, age, gender, and social class. One is
interested in the, say, region and age distribution of phonetic segments in two environments, that is, of
segments that occur between two specific (phonetic prefix - phonetic suffix) pairs. To carry out the
analysis, the transcribed corpus is scanned for the relevant prefix-segment-suffix sequences, labelling
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each such sequence with the regional and age information associated with the interview from which it
came. The aim is to show how a SOM can generate and display a topographic map of the structure of
such a data set. To show this data with a known structure is required; for clarity of exposition, a small,
artificially constructed data set D1 will be used.

The phonetic segment of interest comprises 5 variants, V1 - V5, distributed as shown in Figure 2:
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Figure 2: The structure of the example data set D1

* InRegion 1 all age categories use variant 1 in environment 1, and variant 2 in environment 2

* In Region 2 age categories 1 and 2 use variant 3 in environment 1 and variant 4 in environment 2,
but age category 3 uses variant 4 in both environments

e Inregion 3 all age categories use variant 5in all environments

The first step is to encode the environmental prefixes and suffixes and the segment variants for
processing by a SOM. This means some form of vector encoding. Again for clarity, a binary encoding
is adopted, where 1 and O represent the presence and absence respectively of a phonetic feature;
prefixes and suffixes are encoded as 3-bit and segment variants as 6-bit binary vectors:

E1 prefix: 010 V1: 100011
E1 suffix: 101 V2: 100111
E2 prefix: 011 V3: 010011
E2 suffix: 110 V4: 010111

V5:001111

The encodings are arbitrary, and are not intended to be interpretabl e as specific phonetic features.
The data set corresponding to the structure in Figure 2 isthus:

1. R1IA1El 010100011101 10. R2 A2 E2 011010111110
2.R1A1E2 011100111110 11. R2A3El 010010111101
3.R1LA2E1 010100011101 12. R2 A3 E2 011010111110
4, R1A2E2 011100111110 13.R3A1E1 010000111101
5.R1A3E1l 010100011101 14. R3A1E2 011000111110
6. RLA3E2 011100111110 15.R3A2E1 010000111101
7.R2A1E1 010010011101 16. R3A2 E2 011000111110
8. R2ZA1E2 011010111110 17. R3A3El 010000111101
9.R2A2E1 010010011101 18. R3A3 E2 011000111110

Hierarchical cluster analysis (squared Euclidean distance, averagelinkage) reveal sthe structure of

this data (Figure 3):
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Figure 3: A hierarchical cluster analysisof D1

The two main clusters (1-3) and (4-6) correspond to environments E1 and E3, and within both of
these there is subclustering first by region and then by age. This is the structure which the SOM is
expected to discover from the data.

A SOM wastrained on S1 with the following parameters:

Map axis: 9 (that is, a9 x 9 unit layer) Initial neighbourhood: 9
Initial learning rate: 0.9 Neighbourhood decrement interval: 40 iterations
Learning rate decrement: 0.01 Number of training iterations: 10000

Learning rate decrement interval: 10 iterations

After training the S1 vector set was presented to the net, with the following result (Figure 4):

a

Figure 4: The SOM'’s analysis of D1

The main E1 and E2 clusters are clearly separated from one another on the left and right sides of
the map. The groups in the E2 region are equidistant from one another, corresponding to the E2 subtree
in Figure 2; the distance match with the hierarchical cluster tree, where the distances among 4, 5, and 6
are slightly asymmetrical, is not exact, but the map approximates this as closely as possible given its
coarse granularity. The El region also closely reflects the EI cluster subtree since, in both, 2 and 3 are
closer to one another than they are to 1. In addition, the cluster tree shows that the structure of group 2
is unlike that of the other groups 1 and 3-6 in that R2A3EL1 differs substantially from the other two

members of the group; the map shows a corresponding distance relation.
It can, therefore, be said that the SOM gives a good 2-dimensiatall sppresentation of the

vector similarity relations in the data set, which itself encodes regional, age, and phonetic environment

variation in our hypothetical corpus.
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Now, the hierarchical cluster tree is easily as clear about the structure of the data as the SOM.
What, therefore, is the advantage of SOMs over established cluster analysis methods like hierarchical
analysisin corpus work? The answer isthat, as data sets grow larger and their structure more complex,
existing hierarchical methods become increasingly difficult to interpret, whereas SOMs remain clear.
Consider, for example, another artificial data set D2 of 1000 length-24 real-valued vectors. These were
generated by a process which subdivided them into 5 main groups, numbered (0-200), (201-500), (501-
800), (801-950), and (951-1000). Each was then given some subsidiary structure, and finally noise was
injected into the whole set by randomly sel ecting two components of each vector and incrementing the
values found there by a small random amount. Figures 5 and 6 show the results of hierarchical cluster
analysis (Euclidean distance, single linkage) and SOM analysis respectively.

Figure5: A hierarchical cluster analysis of D2
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Figure 6: A SOM analysisof D2
Both are clear with respect to the main structure of the data, but the subsidiary structure within the

main clusters is much clearer in Figure 6. Both hide some structural information. In Figure 5 it is
amost entirely opague and difficult if not impossible to comprehend. In Figure 6 not al 1000 vectors
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are present on the map: many vectors are mapped to a single unit and, since only one vector label can
be represented at any given location, only one vector location can be displayed. Thus, the upper right-
hand corner of the SOM represents vectors 1-200, but only a minority of theseisvisible. The solution
is both cases is to implement a graphical interface that permits interactive browsing of the structure
display. For Figure 5 this would reveal ever more detailed subtrees, but, as data sets grow larger, such
zooming-in soon make it difficult to see the selected subtree region in relation to the structure treeasa
whole. For Figure 6 there are at least two possibilities. On the one hand, selection of a given unit could
display alist of vectors associated with that unit in a way that allows the analyst to maintain a clear
view its place in the overall structure map, asin Figure 6a. On the other, and more interestingly, one
could use a hierarchical feature map (Merkl 2000) in which each unit of the main SOM has its own
SOM associated with it, allowing the structure of the vectors mapped to the node of interest to be
displayed, asin Figure 6b.

Conclusion

Topographic mapping isanonhierarchical clustering technique that can project high-dimensional
data sets onto low, usually two-dimensional surfaces such that the similarity relations of the data are
represented as spatial distribution of points on the surface. In relation to text corpus analysis, itsmain
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Figure fa: Vector List at selected node Figure 6b: 30M at selected node

advantage over standard hierarchical cluster analysis methods for the purposeisin theintuitive clarity
of results visualization as a spatial structure map, and the scope of that visualization for interactive
exploration of the map. The aim is to develop a SOM-based implementation of a topographic mapping
tool for analysis of the NPECTE corpus.
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