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1 Overview

This paper examines the usefulness of corpus-derived probabili stic grammars as a basis for the auto-
matic construction of grammars optimised for a given parsing task. Initially, a probabili stic context-free
gramma (PCFG) isderived by a straightforward derivation technigue from the Wall Stred Jourral (wsJ)
Corpus, and a basdlineis established by testing the resulting grammar on four different parsing tasks. In
the first optimisation step, different kinds of locd structural context (LSC) are incorporated into the basic
PCFG. Improved parsing results demonstiate the usefulness of the added structural context information.
In the second optimisation step, LSC-PCFGS are optimised in terms of grammar size and performance for
agiven parsing task. Tests show that significant improvements can be achieved by the method propo®d.

The structure of this paper is as foll ows. Sedion 2 discusss the pradicd and theoreticd questions
and issues addressé by thereseach presented in thispaper, and cites existing reseach and reaultsin the
same and related areas Sedion 3 descibeshow Lsc-grammas are derived from corpora, definesthefour
parsing tasks on which grammars are tested, describes data and evaluation methods used, and presents
a basdline technique and basdline results Sedion 4 discusss and describes different types of Lsc and
demonstrates their effea on rule probebiliti es. Methods for deriving four different Lsc-grammars from
the corpus are described, and results for the four parsing tasks are presented. It is shown that al four
typesof Lsc investigated improve results, but that some lead to overspedali sation of grammars. Sedion5
shows tha Lsc-grammars can be optimised for grammar size by a generali sation technique that at the
sarre time sedks to optimise parsing performance for a given parsing tak. An automaic seach method
is described that carries out a search for optimal generalisations of the given grammar in the space of
partitions of nonterminal sets. First results are presented for the automatic seach method that show that
it can be used to reduce grammar size and improve parsing performance

Parent nocde information is shown to be a particularly ussful type of Lsc, and the results for the
complete parsing task achieved with the correspondirg grammar are better than any previously published
results for comparable unlexicdised grammars. Preliminary tests for LSC grammar optimisation show
that it can drasticdly reduce grammar size and significantly improve parsing performance In one set
of experiments, a partition was found that increased the labell ed F-Score for the complete parsing task
from 72.31 to 74.61, whiledeaeasing grammar size from 21,995 rulesand 1,104 nonerminalsto 11,254
rules and 224 nonterminals. Resultsfor grammar optimisation by automatic search of the partition space
show that improvementsin grammar size and parsing performance can beachieved inthisway, but do not
come closeto the big improvements achieved in preliminary tests It is concluded that more sophistcaed
seach techniques are required to achieve this.

2 Background and related reseach

The reseach reported in this paper covas arange of isales (i) corpus-derived grammas, (i) the useful-
ness of structura context information in making parsing dedsions; (iii ) automatic construction methods
for spedalised grammars that take corpus-arived grammars as a starting point; (iv) the (in)adequacy
of PCFGs as a grammar formalism; and (v) the question of whether parsing strategies that do without
lexicd information can come close to the performance of lexicdised systems Ead of thee issues will
be discussd in more detail over the foll owing sedions.

Corpus-derived grammars. Ove the lag five yeas, arange of reseach projeds — eg. Charniak
(1996) Cardie & Pierce (1998) Johnsa (1998 2000) Krotov et a. (2000 — have looked at probe-
bili stic grammars that have been diredly derived from bradetted corpora (or treebanks, hence the term
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“treebank grammar” coined by Charniak, 1996) The basic idea in grammar derivation from corporis
simple. For ead distinct bradetting found in a corpus agrammar ruleis added to the grammar and the
rule’sprobability isderived in some way (often by maximum-lik elihood estimation with some smoothing
method) from the frequency of occurrence of the bradetting in the corpus For instance, the bradetting
(NP (DT the) (NN tree) ) wouldyield the prodwctionruleNP — DT NN

However, becaise the number of rulesin grammas derived in thisentirely straightforward manner is
infeasbly large at leas in the cas of the wsy Corpus, and because their parsing performance moreover
tends to be poar, same techniques are ustally applied to reduce grammar size and to improve perfor-
mance All approadces edit the corpus in same way, e.g. eiminating single child rules, empty category
rules, functional tags, co-indexation tags, and purctuation marks. Different compadion methods (such
as eli minating rules with frequency less than some ») have been invedigated that reduce the size of gram-
mars without too much loss of performance (in particular by Charniak and Krotov et a.). To improve
parsing performance, e.g. Charniak relabels auxiliary verbs with a separate Pos-tag and incorporates a
“right-branching corredion” into the parser to make it prefer right-branching structures.

Asaresult of such techniques, thefinal grammars for which performance results are reported tend to
have littl ein common with the rule set underlying the corpus from which they were derived.

Severa other grammar building and training methods are simil ar to treebank grammar constriction:
Bod & Scha's DoP' method which extrads tree fragments rather than rules from corpora, MBL? methods
(Dademans et al.) for buil ding parsing systens from corpora, and — more generally — ary method that
estimates the lik elihood of bradettings (or of bradettings converted into taggings) from a corpus, since
such methods diredly utili se both the bradettings and their frequencies as found in the corpus.

The existing resultsfor corpus-crived grammarsthat do not undergo significant further development
demonstitetheir limitations they canna compete with state-of-the-art parsing results (see Seaion 2). It
will be argued in this paper that grammars diredly extraded from corporado, however, provide a ussful
starting point for further automatic grammar constriction methods.

Context-free grammarsthat incor porate structural context. It isfrequently observed (e.g. Man-
ning & Schiutze (1999 p. 416f)) that PCFGs are inadequate as a gramma formdism becaise of the
very strorg independence assumptions inherent in them, refleading on the one hand a complete ladk of
lexicdisation, and on the other alad of structure dependence

It istruethat in conventional PCFGs the probability of, say, a given NP bradetting isindependent of
the identity of the head noun as well as its structural context (e.g. whether the NP isin subjed or objed
position) However, thisindependence is nat due to the formal charaderistics of PCFGS, but rather to the
way they tend to be used. If the set of nonerminals of a PCFG does not distinguis between, say, NPSin
subjed positionand NPsin objed position, then the probebiliti esof any rules containing the nonerminal
NP are necessarily independent of the subjed/objed distinction.

However, it is straightforward to introduce such a dependence into a PCFG by splitting the category
NP into two caegories NP-SBJ and NP-OBJ. Similarly, caegories (nonterminals) can be divided on the
bads of lexemeslexicd caegories or semaitic classes.

PCFGSmay nat be ableto acoommodate lexicd and structural informationinthe most elegant fashion,
but the point hereisnot about representational el egance and efficiency. Rather, thefad that PCFGs encode
languages that make up the formal class of context-free languages is entirely separate from their ability
to refled the dependence of rule probabilitieson lexicd and structural context.

Examining different kinds of structural context within the PcrG framework (as dore in this paper)
has two advantages. firstly, there are polynamial-time algorithms for finding mog likely parses, and
seondly, there is a simple measure of the complexity added to a grammar by the introduction of a
piece of structural information such as the subjed/objed distinction, namely theresulting increase inthe
number of rulesin the grammar.

Automatic grammar construction. It is sometimes observed that deriving probabili stic grammars
from corporain the way deseibed above is not an automatic grammat learning method because al that
isdoreisto extrad the PCFG that underliesthe corpus and is encoded in its sentences, bradettings and
occurrence frequencies. Aswas pointed out above, creging agrammar inthisway is simply one of many
ways to utili se the bradkettings and frequencies of corpors, afeaure shared with many computational
learning approacdhes to automatic grammar constriction. However, as previously mentioned, the limita-
tions of grammars direaly extraded from corporaindicae that using them as starting points for further
grammar development isthe more useful approac.

1Data-Oriented Parsing.
°Memory-Basal Learring.
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Grammar/Parser Gramma Size performance (WSJ unseen)
LR UR[ LP UPJ CB
Fully lexicalised:
Collins(2000) - 1901 - | 904 - 1073
Charniak (2000) - 1901 -1 901 -1 074
Collins(1999) — | 885 — | 887 -1 092
Collins(1997) — | 881 — | 886 -1 091
Charniak (1997) - | 875 - | 874 - 11.00
Magerman (1995 SPATTER — | 846 — | 849 - | 1.26
Nonlexicalised:
Charniak (1996) 10,605 — 788 - 804 -
without frequency 1 rules 3,943 - 782 - 807 -
Krotov et a. (2000) 15420 741 771 | 774 806 | 213
without frequency 1 rules 6,514 | 744 775 | 769 802 | 2.18
wsJ 15-18 treehank PCFG 6,135 | 69.1 -1 714 - | 2.67

Table 1. Performance of comparable lexicdised and nonlexicdised grammars on full parsing.

| Reference Method | LP] LR | F-Score]

Lexicalised:

Tjong Kim Sang et al. (2000) Sysem combination 94.2 | 936 939

Mufoz et a. (1999) SNoW 924 | 931 928

XTAG Reseach Grouwp (1998) XTAG + Supertagging 918 | 930 924

Ramshaw & Marcus(1995)  Transformation Based Leaning || 91.8 | 923 920

Veastra (1998) MBL 89.0 | 943 916

Nonlexicalised:

Argamon et d. (1999) MBL 916 | 916 916

Cardie & Pierce (1998) Error-Driven Grammar Pruning || 90.7 | 91.1 90.9
wsJ 15-18 treebank PCFG 89.2 | 876 884

Table 2: Performance of comparable lexicdised and nonlexicdised grammars on NP-chunking.

Creding a starting point for grammat learning in thisway is particularly us€ul becaise context-free
grammars cannd be leant from scratch from data. At the very least, an upper bourd mug be placed on
the number of nonerminals allowed. Even when that is dore, there is no likelihood that the grammars
resulting from an otherwise unsupervised method will look anything like a linguistic grammar whose
parses can provide a basis for semantic analysis®.

Par sing with(out) lexical information. Corpus-@rived grammars tend to be nonlexicdised PCFGS,
hence the existing reseacch cited above can be seen as investigationsinto the resultsthat can be achieved
in parsing without taking into acmunt lexicd information.

In syniadic parsing tasks nonlexicdised methods are generaly outperformed by lexicdised ap-
proadies. In the case of complete (non-stallow) parsing, nonlexicdised methods are outperformed by
large margins Table 1 shows an overview of state-of-the-art nonlexicdised and lexicdised results for
gtatisticd parsing systems (U/LR = Un-/Labelled Recdl, U/L P = Un-/Labell ed Predsion, see Sedion 3).
For comparison, the last row of the table shows this paper’s baseline result for the complete parsing task
(see Sedion 3.4).

In NP-chunking a shall ow syntadic parsing task that has become a popukbr reseach topic over the
lag decale (for detail s see Setion 3.2 below), nonlexicdised sysems also tend to lag behind lexicdised
ones, dthough by much smaller margins Table 2 shows a range of results for the baseNP chunking task
and data set given by Ramshaw & Marcus (1995) Again, the correspondirg basdine result from this
paper isincluded in the last row. It is clea from this overview that the difference between lexicdised
and unlexicdised systemsis far small er for this parsing task than for complete parsing.

There are severd reasors for investigating how well parsers can do without lexicdisation. Apart

3Any linguistic cFG can be converted into a norma form that encods the sane set of sertences but whose derivations and
subgructures are not sematicaly meanngful.
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from thetheoreticd interest, optimising grammars before adding lexicdi sation may improvetheir overall
performance as lexicdised sysems often perform worse than comparable nonlexicdised sysems when
the lexicd comporent is taken out E.g. Collins (1996 includes results for the system with lexicd
information removed, which reduces LR from 85.0 to 76.1 and LP from 85.1 to 76.6 in one test —worse
than the comparable results reported below in Sedion 4.3 (78.78 and 77.16). Furthermore, the results
shown in Tables 1, 2 and 4 indicae that shal ow parsing taks require lexicd information to afar lesser
extent than nonstall ow ones, so that the added expense of lexicdisation might be avoidable in the case
of sudh tasks.

3 Grammars, parsing tasks data and evaluation

3.1 Grammarsfrom corpora

The basic procedure used for deriving PCFGs from wsJ Sedions 15—18 can be summarised as foll ows®*:

1. Inthefirst step, the corpusisiteratively edited by deleting (i) bradets and labels that correspond
to empty caegory expansions; (ii) bradets and labels containing a single congtitutent that is not
labelled with a Pos-tag; (iii) crossindexation tags; (iv) bradets that become empty through a
deletion; and (v) functiona tags.

2. In the seond step, eat remaning bradetting in the corpus is converted into a prodiction rule.
The rules are divided into nonlexicd ones (those that form the grammar), and lexicd ones (those
that form the lexicon).

3. Inthefina step, a complete PCFG is creaed. The sd of lexicd rulesis converted into a lexicon
with pos-tag frequency information. The set of nonterminalsis colleded from the set of rules.
Eadt sd is sorted, the number of times ead item occurs is determined, and dugdicaes are re-
moved. Probabilities P for rules N — ¢ are cdculated from therule frequencies C' by Maximum

Likelihood Estimation (MLE): Py g(N — ¢) = Eﬂ%

3.2 Four parsing tasks

Results are given in the foll owing and subgquent sedions for four different parsing tasks:

1. Full parsing Thetask isto assign acomplete parsetotheinput sentence A full parseisconsicered
100% corred if it isidenticd to the correspondiry parse given in the wsi Corpus.

2. Nown phrase identification: The task isto identify in the input sentence all noun phrases, nested
and otherwise, that are given in the correspondirg wsJi Corpus parse.

3. Compktetext churking: This task was first defined in Tjong Kim Sang & Buchholz (2000) and
involves dividing a sentence into flat chunks of 11 different types. The target parses are derived
from wsJ parses by a deterministic conversion procedure.

4. Base nown phraseidentification: First defined by Abney (1991) thistask involves the recgnition
of non-reaurgve noun phrase chunks (socdled baseNPs) Target parses are derived from wsJ
parses by a simple conversion procedure.

3.3 Dataand evaluation

Sedions 15-18 of theWall Stred Jourral (wsJ) corpuswere used for grammar derivation, and Sedion 01
from the same corpus was used for testing parsing performance Parsing performance was tested with
the commonly used eval b program by Sekine & Collins®. The program evaluates parses in terms of
the standard PARSEVAL evaluation metrics Predsion, Reall and crossirg brackets. For aparse P and a
correspondimg target parse’!’, Predsion measires the percentage of bradketsin P that match the target
bradettingsin 7". Recdl isthe percentage of bradettingsfrom 7" that arein P. Crosdng bradets gives
the average number of congtituentsin one parse tree that cross over constituent boundxriesin the other
tree (Seeeg. Manning & Sditze (1999) p. 432-434)

For Predsion and Recadl there are unlabelled and labelled variants In the latter, both the pair of
bradets and the constituent label on the bradket pair have to be correa for the bradetting to be correa,

4Throughou this pape, wsJrefersto the PENN Il Tredoank version.
5Avail able from http://cs.nyu.edu/cs/projects/proteus/evalb/
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whereas in the unlabelled variant only the bradets have to be corred. In this paper, unless otherwise
stated, Predsion and Recdl aways mea Labelled Predsion and Recdl, in particular, al new resilts
presated are the labell ed variants. Predsion and Recdl are commonly combined into asingle measire,
cdled F-Saore, given by (32 +1 )x Precision x Recall/3% (Precision + Recall). Inthispaper, 3 = 1
throughout.

All grammars tested are nonlexicdised, therefore input sentences are sequences of Pos-tags not
words In the tests sentences of alength above 40 words (consisently close to 7.5% of all sentencesin
acorpus sedion) were left out. All grammars are formally probabili stic context-free grammars (PCFGS).
The parsing padkage LoPar (Schmid (2000) was used to obtain Viterbi parses for data sets and gram-
mars. If LoPar failed to find a complete parse for a sentence a simple grammar extension method was
usel to obtain partia parsesinstea.

3.4 Basdine

A basdine gramma “BARE' was extraded from wsJ Sedions 15—18 by the method described in Sec
tion 3.1, applied to the four parsing tasks defined in Sedion 3.2, and tested and evaluated as desribed in
the precaling sed¢ion. Thisyielded the following se of reslts which forms the baséi ne for the purpose
of this paper. (Resultsinclude 9 partial parses.)

Full parsing NP identification BaseNP chunking || Complete text chunking
LR] LP] F| LR] LP] F[ LR] LP] F| LR] LP] F
| 69.08 [ 7143 | 7024 || 7497 | 8162 ] 7815 [ 87.6 | 89.21 | 884 | 8963 | 8899 | 8931

4 Introducing structura | context into PCFGs

4.1 Different typesof structural context

In thissedion, the effeds of introducing three different types of structural context (sc) into PCFG BARE
are examined: (i) the grammaticd function of phrases, (ii) their depth in the parse treg and (iii ) the cate-
gory of the parent phrase. All threetypes of structural context are locd to the immediate neighbourhood
of the phrase node for which they providethe expansion probability conditions. Other locd sc typesthat
could be considered include pasition among the children of the parent node, and identity of immediate
sibling nodes. Useful nonlocd sc types might be the identity of more distant ancestors than the parent
nodke and of more distant sibling nodes.

Grammatical function. As mentioned above, the wsJ corpus subdvides standard phrase categories
such as NP by attaching functional tags to them that reflea the grammaticd function of the category, eg.
NP-SBJ and NP-OBJ. However, the corpusisnot consisently annotated in thisfashion (the same type of
phrase may have zero, one or more functional tags). Parsing results for grammar FTAGS might be better
if the grammar is derived from a more consisently annotated corpus.

Therulethat expands anoun phraseto apersoral pronouwnisastrorg example of the extent to which
grammaticd function can affed expansion probebiliti es. In the wsj, 13.7% of al NPs expand to PRP
as subgd, compared to only 2.1% as objed. Of dl objed NPs, 13.4% expand to PRP as first objed,
compared to 0.9% as seand objed (souce Manning & Schuetze, 1999 p. 420).

Depth of embedding. The depth of embedding of a phrase is determined as foll ows. The outermost
bradketting (correspondirg to the top of the parse treg is at depth 1, itsimmediate constituents are at
depth 2, and so on. In the parsed sentence (S (NP (DT the ) (NN cat) ) (VP (VBD sat) (PP
( N on) (NP (DT the) (NN mat))))) , Sisat depth 1, the first occurrences of NP and VP are at
depth 2, the first occurrences of DT and NN as well as VBD and PP at depth 3, | N and the second NP at
depth 4, and the seamnd occurrences of DT and NN are at depth 5.

Itisnat obviousthat the depth of embedding of a phrase captures linguisticdl y meaningful parts of
itslocd structural context. However, different phrases of the sane category do occur at certain depths
with higher frequency than at others. Thisis most intuitively clea in the case of NPs, where subjed NPS
occaur at depth 2, whereas objed NPs ocaur at lower depths.

More surprisingy, v Pstoo have preferencesfor occurring at certain levels. Table 3 (previously shown
in Belz (200Q p. 49)) provides clea evidence of this. The first column shows the six mog frequent wsJ
VP expansion rules, the seand column shows their canonica probebiliti es (cd culated over al wsi vp
rules). The remaining columns show how these probabiliti es change if they are made conditioral on
depths of embedding 2—7. For ead depth, the higheg rule probability is highlighted in boldface font,
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Depth of Embedihg
2 3 4 5 6 7
smve—Tove)  0.089 | 0.004 0.067 0.136 0.127 0.135 0.130
smve—wmove  0.056 | 0.075 0.043 0.055 0062 0050 0.047
smve—vene)  0.054 | 0.001 0.036 0.052 0073 0088 0.096
mve—vener)  0.039 | 0.004 0.049 0.047 0.042 0.044 0.055
smve—vezve  0.038 | 0.069 0.034 0.037 0025 0023 0.021
sve—veps  0.026 | 0.090 0.016 0.005 0.005 0.004 0.003

Table 3: Rule probabiliti esat different depths of embedding for 6 common VP rules.

and the second highest initalics. At depth 2, for instance, the mog likely ruleis the one with the fourth
highest canonicd probebility, and at depth 5, the second most lik ely rule isthe one with the third highest
canonicd probebility. In fad, there is only one depth (4) at which rule probeblities appea in their
canonicd order, which shows how strongly even VP rules are affeded by depth of embedding.

Parent node The parent node of a phrase is the caegory of the phrase that immediately con-
tainsit. In (S (NP (DT the) (NN cat) ) (VP (VBD sat) (PP (I Non) (NP (DT the) (NN
mat)))) ) Sisthe parent of NP and VP, VP isthe parent of PP, which is the parent of NP. Thus dis-
tinguishirg between NP-S (an NP with S as its parent) and NP-PP cgptures part of the subjed/object
digtinction.

The advantage of using parent node information was previously noted by Johnsof (1998).

4.2 Four LSC-Grammars

Grammais incorporating loca structural context — or LSC grammas — were extraded from the corpus
by the sane procedure as descibed in Sedion 3.1 above except that during Step 2, ead bradet label
that isnot a POs tag was annotated with atag representing the required type of LscC.

Four different grammars were derived in thisway, PCrGs FTAGS, DOE, PN and DOEPN. All four
grammars incorporate the functional tags present in the wsy Corpus Additionaly, for grammar DOE,
eah nonerminal was annotated with a tag representing the depth of embedding at which it was found,
for grammar PN, nonterminals were annotated with tags encoding their parent node, and for grammar
DOEPN, nonerminas were given both depth and parent node tags. The resulting grammars are signifi-
cantly larger than the baseline grammar BARE Grammar sizes and numbers of nonerminas (excluding
POS tags) are as foll ows:

Gramma Type | BARE | FTAGS DOE PN | DOEPN
Size (n rules) 6,135 | 10,118 | 21,995 | 16480 | 33101
Nonterminals 26 147 1,104 970 4,015

4.3 Performance on parsing tasks

In cdculating labell ed bradetting Recdl and Predsion for the Lsc-grammar results, al labels starting
with the same categoty prefix, e.g. NP, are consicered equivalent (standard in evalb ). Theideais that
the additiona information encoded in the LSc-tags attached to category labels helps sded the correct
parse, nat that it shoul be retained in the annotation for further analysis. Table 4 shows parsing results
for the uneen data in wsJ Sedion 01 (the results for basdine grammar BARE are aso included for
comparison). Best F-Scores are highlighted in boldface font, and second-test F-Scoresinitalics.

Thebest resultsin Table 4 are better than those reported by Charniak (1996 and Krotov et a. (2000),
even though the previous results were obtained after using ca 10/11 of the wsJ corpus as a training set
(compared to 3/25 used here):

UF  LF
Krotov et d. (2000) | 79.12 76.09
Charniak (1996) 79.59 -
PN-Grammar 8051 7796

6Johnsacdls it grandpaert node but mearsthe sanething.
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Gramma Type || BARE | FTAGS| DOE | PN [ DOEPN |

Partia parses I 9] 9] 25| 20] 62
Full parsing:

LR 69.08 7141 | 7272 | 7878 74.33
LP 7143 7306 | 719 | 7716 7061
F-Score 7024 | 7223 | 7231 | 77.96 7242
Crossimg bradkets 2.76 251 | 253| 191 259
% 0CBs 3234 3543 | 3575 | 44.40 370
NP identificaion:

LR 7497 | 7722 | 782 | 8386 8102
LP 8162 | 8102 | 7756 | 8122 74.30
F-Score 7815 79.07 | 77.88 | 8252 7751
BaseNP chunking:

LR 876 | 8735 | 87.02 | 90.27 87.05
LP 8921 | 8868 | 87.03 | 8952 84.11
F-Score 884 | 8801 | 87.02 | 89.89 85.55
Complete text chunking:

LR 8963 | 8949 | 8917 | 90.84 89.24
LP 8899 | 8864 | 87.28 | 8946 85.85
F-Score 8931 | 89.06 | 8821 | 90.14 8751

Table 4: Parsing resultsfor the four Lsc-grammars and wsJ Sedion 01.

Incorporating different types of Lsc affeds reallts for the four parsing taksin different ways. Itis
clea from the resultsin Table 4 that some kinds of contextua information are useful for some tasks but
not for others. For example, adding parent phrase information improved results (from grammar BARE
to gramma PN) by almog 8 points (F-Score 70.24 to 77.96) for the complete parsing task, by abou 4.5
points (F-Score 78.15 to 82.52) for NP identificaion, by 1.5 points (F-Score 88.4 to 89.89) for baseNP
chunking and by just under one point (F-Score 89.31 to 90.14) for complete text chunking.

Itislikely that adding depth of embedding information indiscriminately (as in grammars DOE and
DOEPN) resultsin overspedalisation. Looking at results for seen data (part of the training corpug con-
firmsthis. Table 5 showsresultsfor the baseline grammar and the four LsC grammars on wsJ Sedion 15,
i.e. one of the sedions used during grammar derivation. On seen data, grammar DOEPN performs best
on al parsing tasks Tables 4 and 5 together imply that adding depth of embedding information for all
depthsto al rules simply overfits the training data and results in undergeneralisation.

Similarly, it is likely that not al the information added in the four Lsc grammars is useful for dl
parsing tasks Distinguishirg 27 depths of embedding is probebly too much for all parsing tasks e.g.
distinguishirg depths above 20 isgeneraly unlikely to be useful, as the ocaurrence of rulesat such depths
israre. Techniques for eli minating the information that makes no useful contribution for a given parsing
task are discussd in the foll owing sedion.

5 Automatic optimisation of LSC-Grammars

5.1 Initial assumptions

If itistruethat some of the Lsc information added to the grammars tested so far makes littl eor no contri-
bution to agrammar’s performance on a given parsing task, then it shoul be possibéto reduce grammar
size without loss of parsing performance by seledively taking out same of the added information. At
the same time, if it istrue that some of the Lsc-grammars are overspedalised (overfit the data), then it
shout be possibé to improve the grammar’s performance by seledively generalising them.

Aspointed out above in Sedion 4.3, itisclea from the Lsc resultsthat adding different kindsof Lsc
information to a grammar has different effeds on the results for different parsing tasks It shoud there-
fore be possibé to optimise a grammar for a given parsing task by seledively taking out the information
that is not useful for the given task. The idea behind the experiments reported in the foll owing sedion
was to see to what extent the Lsc grammars can be optimised in terms of size and parsing performance
by grammar partitioning for ead of the parsing tass.
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Gramma Type || BARE | FTAGS| DOE | PN [ DOEPN |

Partia parses I 0] 0 | 0] 0] 0
Full Parsing:

LR 7148 7515 | 8281 | 84.64 90.39
LP 7503 | 7864 | 84.86 | 8594 9143
F-Score 7321 | 7686 | 8382 | 8529 9091
Crossimg bradkets 257 215 137| 131 0.75
% 0CBs 3448 | 4185 | 5631 | 57.33 7346
NP identificaion:

LR 7654 79.26 | 8451 | 87.46 91.17
LP 8489 | 8561 | 8879 | 8875 9261
F-Score 805 | 8231 | 866 | 881 9188
BaseNP chunking:

LR 9021 | 9028 | 9268 | 9440 95.99
LP 9259 | 9270 | 9454 | 9566 97.19
F-Score 9138 | 9147 | 9360 | 95.03 96.59
Complete text chunking:

LR 9168 | 9167 | 9359 | 94.25 96.45
LP 9246 | 9256 | 94.19 | 95.02 96.84
F-Score 9207 | 9211 | 9389 | 9463 96.64

Table 5: Parsing resultsfor the Lsc-grammars and wsJ Sedion 15 (see data).

5.2 Prdiminary definitions

The addition of structural context as described in previous sedions can be viewed in terms of split
operations on nonerminals, eg. in the FTAGS grammar, the nonterminal NP is split into NP-SUBJ and
NP-OBJ (among others). This resultsin grammar spedalisation, i.e. the new grammar parses a Subst
of the set of sentences parsed by the origina one. The reverse, repladng NP-SUBJ and NP-OBJ with a
single nonermina NP, can be see as a merge operation, and resultsin gramma generdisaion, i.e. the
new grammar parses a superset of the sentences parsed by the original one.

An arbitrary number of such merge operations can be represented by a partition on the set of nonter-
minals of agrammar. A partitionis defined as foll ows.

Definition 1 Partition

A partition of a nonempty set A isasubst IT of 24 such that § is not an element of IT and
eath elemet of A isinoneand only oneset in I1.

PCFGS can be defined as foll ows.

Definition 2 Probabili stic Context-Free Grammar (PCFG)

A pcresisad4-tuple(W, N , N°| R), where W isaset of terminal symbols{wy, ... w,}, N
isaset of nonermina symbols{ny,...n,}, N° C N isaset of start symbols{n3, ... n},
und R isaset of rules with associated probebilities {(r1, p(r1)), .. . (r1, p(rz)) }. Eadrule
r isof theform n — «, where « is a sequence of terminals and nonerminals. For each
nonermina n, thevauesof al p(n — a;) sunto one.

Given aPCFGG = (W, N, N°| R) and apartition Iy = {Ny,... N, } of the set of nonerminals
N, the partitioned PCFG G’ = (W, N, NS R') isderived by the foll owing procedure:

1. Assign anew nonermina name to ead of the non-singéton elements of 11 .

2. For eatiruler; in R, and for ead nonerminal »; in r;, if n; isinanon-singetonelement of 11,
replace it with the correspondimg new nonterminal.

3. Find dl rulesin R of which there are multiple occurrences as aresult of the substitutionsin Step 2,
sum their frequencies and recdculate the rule probabiliti es.
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If start symbols are permitted to be merged with non-start symbols, then there are two ways of
determining the probebility of arule expanding the nonterminal resulting from such a merge: either its
frequency is the sum of the frequencies of all nonerminalsin the merge s, or it is the sum of just the
frequencies of the start symbolsin the merge set. The latter option was chosen in thetests reported bel ow.

5.3 “Proof of concept”

The discusson and results in this sedion provide preliminary confirmation of the prediction made in
Secion 4.3 that for the different LsC grammars there exist (non-tivia) partitions that outperform the
origina base grammar. More formally, the “prod of concept” provided below shows the foll owing for
most of the grammar/task combinations:

Given a base grammar G = (W, N, N° | R) and aparsing task P, a partition of the set of
nonerminas N can be found such that the derived grammar G' = (W, N/, NS R')

1. issmalerthan G (i.e. |R'| < |R]), and
2. performs better than G on P.

Sone of the five LsC-PCRGS can be derived by partition from one of the others. For example, BARE
can be derived from al others, FTAGS can be derived from DOE, PN and DOEPN, and DOE and PN
can both be derived from DOEPN. This means that for some of the grammars, the results given in
Sedion 4.3 in themselves show that there exists at least one (non-tiivial) partition that is smaller than
and outperformsthe origina grammar. E.g. for the baseNP chunking task, the partition that derives PN
from DOEPN achieves nealy a 3 point improvement (F-Score 87.63 to 90.23), while reducing grammar
size from 33,101 rulesto 16,480 and the number of non-erminasfrom 4,015 to 970.

In the remainder of this sedion it is shown that there are other partitions of the DOE grammar that
improves its performance and reduces its size.

| Gramma type || Depth bands | Gramma size | Nonterminals |

DOE 1,2,...27 21,995 1,104
1,2, 3, rest 12,933 312

1, 2, rest 11,254 224

1, rest 10,165 170

FTAGS - 10,118 147
BARE - 6,135 26

Table 6: Sizes and depth bands of DOE grammar and 5 of its partitions.

From the parsing results for the DOE grammar it appeas that indiscriminately adding depth of em-
bedding information does not help improve parsing performance for shallow parsing tasks on unseen
data: while there is a significant improvement for the complete parsing task (F-Score 70.24 to 72.31),
the F-Scores for the other three parsing tasks are worse. That there is any improvement showsthat some
useful information is added. It is likely that distinguisting al depths simply leads to overspedalisa
tion of the grammar, resulting in alarge increase in parse failures on the one hand, and the sdedion of
bad, previously unlikely, parses on the other. If thisis so then partitioning the DOE grammat in a way
equivaent to distinguishiry broader depth bands rather than ead individual depth will improve reaults.

To test this hypothesis, three different partitions of the DOE grammar were creged. The partitions
(too large to be shown in their entirety) correspord to distinguishing between the different depths shown
in the second column of Table 6, e.g. in the case of the fourth row, all nonerminasNT-n with a depth tag
n greder than 1 are merged into a single nonterminal NT-rest The last two columns show the number
of rules and nonerminasin ead gramma. The lag two rows show the correspondirg numbers for the
BARE and FTAGS grammas (DOE-type grammars al incorporate functional tags).

The partitioned DOE grammars all improve results (compared to grammars BARE FTAGS, and DOE)
for the full parsing task, with the DOE-{1, 2, rest} grammar performing the best For the NP identifi-
cation tak, gramma DOE adieved aworse F-Saore than grammat BARE yet dl the partitioned DOE
grammas achieve a better F-Score than gramma BARE with the DOE-{1, 2, rest} grammar again per-
forming the best. On the baseNP chunking task and the complete text chunking task, grammar BARE
performs the best, but al the derived DOE grammars outperform the nongartitioned DOE gramma. On
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Gramma Type |

BARE | FTAGS | DOE | DOE-{Lr} [ DOE{12r} | DOE{{,2, 3,1} |

Full Parsing:

LR 69.08 7141 | 7272 7335 74.13 7414
LP 7143 7306 | 719 7448 751 7473
F-Score 7024 7223 | 7231 7391 7461 7443
Crossimg bradkets 2.76 251 | 253 2.32 219 221
% 0 CBs 3234 | 3543 | 3575 38.83 391 38.56
NP identificdion:

LR 7497 7722 | 782 77.39 7795 7829
LP 8162 | 8102 | 7756 8120 8131 80.85
F-Score 7815 | 7907 | 77.88 79.25 79.59 79.55
BaseNP chunking:

LR 876 | 8735 | 87.02 87.82 87.73 87.74
LP 89.21 | 8868 | 87.03 88.93 88.59 88.11
F-Score 884 | 8801 | 87.02 88.37 88.16 87.93
Complete text chunking:

LR 89.63 | 8949 | 8917 89.58 89.71 89.70
LP 8899 | 8864 | 87.28 88.54 88.52 88.29
F-Score 8931 | 8906 | 8821 89.06 89.11 88.99

Table 7: Parsing results of DOE grammar and 5 of its partitions.

{ {0y, {1}, {2} }

{ {01}, {2} {{02, {2v} { {12}, {0} }

{ {0,1,2} } { {0,1,2} } { {0,1,2} }
Figure 1: Partition tree for a set with three elements.

the baseNP chunking task, the BARE gramma’s F-Sareis closdy mached by the DOE-{1, rest} gram-
mar. These results show that partitions can be found that not only drasticdly reduce grammar size but
also significantly improve parsing performance on a given parsing ta.

5.4 Seach for optimal partition of LSC-Grammars

Given. A PCFGG = (W, N, N* | R), adataset D, and a set of target parses DT for D.

Search space The seach space is defined as the partition tree for the set of nonterminals vV in the
given grammar(;. Each nodein thetreeis oneof the partitionsof NV, such that eat node’s partition has
fewer elements than al of its ancestors, and the partition a eat node can be derived from its parent by
merging two e ements of the parent’s partition.

The single node at the top of the tree isthe trivia partition correspondirg to NV itself. Each node is
the parent of £(n? — n) child nodes, where n is the number of elements in the parent partition. Each
level reduces the number of states by one. The complete partition tree for a set with three elements looks
asshowninFigurel.

Search method. The partition tree is searched top-down by a variant of bean seach. A list of the
n current best candidate partitions is maintained (initi ali sed to the trivia partition). For eat of the n
current best partitions a subset of size b of its children in the partition tree is generated and evaluated
(b thus defines the width of the beam). From the set of current best partitions and the newly generated
candidate partitions, then bed elemants are sdeded and form the new current beg sd. Thisprocesis
iterated until either no new partitions can be generated that are better than their parents, or the lowest
level of the partition tree is readed.

In the current version of the evaluation function, only the F-Score achieved by candidate solutions
on the test data is taken into acount Seach stops if in any iteration (depth of the partition treg no
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solution is found that outperforms the current best solutions. That is, sizeis not explicitly evaluated at
al. Candidate solutions are evaluated on a subse of the ted data, becaise evaluating ead candidate
solution on all 1,993 sentences of wsJi Sedion 01 makes the cod of the search procedure prohibitive.

There are three variable parameters in the partition tree seach procedure: (i) the number » partitions
(nodesin the treg that are further explored, (ii) the size « of the subst of the test data that candidate
solutions are evaluated on, and (ii) the width & of the beam.

5.5 Resultsfor LSC-Grammar optimisation by search of partition tree

Table 8 shows same results for automatic optimisation experiments carried out for grammar PN and the
baseNP chunking and completetext chunking tasks Thefirst three columns show the variable parameters
b (bean width), n (size of li st of best solutionsmaintained), and = (size of datasubt used inevauation).
The fourth column shows the number of runs results are averaged over, and the fifth and sixth columns
show the number of iterations and evaluations caried out before seach stopped. Column 7 gives the
average number of nonterminalsthe best solution grammars had, and column 8 their average evaluation
smre. The lag two columns show the overall change in F-Score (cdculated on all of wsi Sedion 01)
and grammar size for the given grammar and parsing task.

Var. Parameters | Runs | Iter. | Eval. Nonerms | F-Score (sub) || F-Score +/- Siz +/-
b | n | x
Gramma: PN; Grammar Size 16,480/970
Task BaseNP chunking F-Score: 89.89

100 [2 [50] 4 4 |45 96825 | 9593 +0.032 (89.92) | -0.25
100 | 10|50 | 4 6.75 | 3415 | 96725 | 97.25 +0.048 (89.94) | -2
500 |1 |50 4 525| 499 | 9675 97.49 +0.06 (89.95) | -2.25

Grammar: PN; Grammar Size 16,480/970
Task Complete Text Chunking F-Score: 90.14

10001 [10]4 |5 [52375]967 [ 10000 [ +0.06(902) [ 075 |

Table 8: Resultsfor automatic optimisation tests.

Current results show insensitivity to the pred se values of parameters b and ». What appea’s to matter
isjust the total number of evaluations, results being better the more candidate solutions are evaluated.
Results indicae a greder sensitivity to the value of =: a data subset size of 10 is clealy too small, as
seach quickly finds solutiorswith an F-Score of 100 and then stops (last row of Table 8).

Overall, results are not nealy as goad as might have been expeded after the preliminary tests de-
scribed above. Only small numbers of nonterminals were merged, and small improvements achieved,
before seach stopped. However, the fad that every single run achieved an F-Score improvement and
amsa al runsresulted in a deaease in grammar size even for small numbers of merged nonerminals
indicates that the basic appraadc isright, but that same way has to be found of overcoming thelocd op-
tima on which seach in thereported experiments stopped, by widening the width of the beam, changing
the evaluation function, or by using a more sophistcaed seach method.

6 Conclusonsand further research

The first part of this paper looked at the effed of adding three different kinds of locd structurd context
— grammaticd function, parent node and depth of embedding — to abasic PCFG derived from the Wall
Stred Jourral Corpus Grammars were tested on four different parsing task differing in complexity and
shall owness Reaultsshowed that all threetypes of context improve performance on the compl ete parsing
task, but that only parent node information improves performance on al parsing tasks The PCFG with
parent nodk information was particularly succes$ul and achieved better results on the complete parsing
task than the best previously published results for nonlexicdised grammars and wsJ corpus data.

Inthe second part of the paper, anew method for optimising PCFGSs wasintroduced that hasthe effect
of overcoming overspedalisation by generalising grammars. It was shown that partitions can be found
that drasticdly reduce grammar size and significantly improve parsing performance First results were
reported for applying an automatic seach method to a PCFG that incorporates parent node information,
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and the tasks of baseNP chunking and complete text chunking Resultsare promising, but indicatethat in
order to achieve radicd improvemaents in parsing performance and gramma size a different evaluation
function and/a more sophistcated search methods may be required.
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