
Optimisation of corpus-derived probabilistic grammars

AnjaBelz
CCSRC, SRI International
23 Millers Yard, Mil l Lane
CambridgeCB2 1RQ, UK

1 Overview

This paper examines the usefulness of corpus-derived probabili stic grammars as a basis for the auto-
matic construction of grammars optimised for a given parsing task. Initiall y, a probabili stic context-free
grammar (PCFG) isderived by astraightforwardderivation techniquefrom theWall Street Journal (WSJ)
Corpus, and a baseline isestablished by testing theresulting grammar on four different parsing tasks. In
thefirst optimisationstep, different kindsof local structural context (LSC) are incorporated into thebasic
PCFG. Improved parsing resultsdemonstrate the usefulness of theadded structural context information.
In thesecond optimisationstep, LSC-PCFGs areoptimised in termsof grammar sizeand performancefor
a given parsing task. Tests show that significant improvementscan be achieved by themethod proposed.

The structure of this paper is as follows. Section 2 discusses the practical and theoretical questions
and issuesaddressed by theresearch presented in thispaper, and citesexisting research and results in the
sameand related areas. Section3 describeshow LSC-grammarsarederived fromcorpora, definesthefour
parsing tasks on which grammars are tested, describes data and evaluation methods used, and presents
a baseline technique and baseline results. Section 4 discusses and describes different types of LSC and
demonstrates their effect on rule probabiliti es. Methods for deriving four different LSC-grammars from
the corpus are described, and results for the four parsing tasks are presented. It is shown that all four
typesof LSC investigated improveresults, but that somelead tooverspeciali sationof grammars. Section 5
shows that LSC-grammars can be optimised for grammar size by a generali sation technique that at the
same timeseeks to optimiseparsing performance for a given parsing task. An automatic search method
is described that carries out a search for optimal generalisations of the given grammar in the space of
partitionsof nonterminal sets. First resultsare presented for theautomatic search method that show that
it can be used to reduce grammar size and improve parsing performance.

Parent node information is shown to be a particularly useful type of LSC, and the results for the
completeparsing task achieved with thecorrespondinggrammar arebetter than any previously published
results for comparable unlexicali sed grammars. Preliminary tests for LSC grammar optimisation show
that it can drasticall y reduce grammar size and significantly improve parsing performance. In one set
of experiments, a partition was found that increased the labelled F-Score for the complete parsing task
from 72.31 to 74.61, whiledecreasing grammar size from 21,995 rulesand 1,104 nonterminalsto 11,254
rulesand 224 nonterminals. Resultsfor grammar optimisationby automatic search of thepartitionspace
show that improvementsin grammar sizeand parsing performancecan beachieved in thisway, but donot
comecloseto thebig improvementsachieved in preliminary tests. It isconcluded that moresophisticated
search techniquesare required to achieve this.

2 Background and related research

The research reported in thispaper covers arangeof issues: (i) corpus-derived grammars; (ii) theuseful-
ness of structural context information in making parsing decisions; (iii) automatic construction methods
for specialised grammars that take corpus-derived grammars as a starting point; (iv) the (in)adequacy
of PCFGs as a grammar formalism; and (v) the question of whether parsing strategies that do without
lexical information can come closer to theperformance of lexicali sed systems. Each of these issues wil l
be discussed in more detail over the followingsections.

Corpus-derived grammars. Over the last five years, a range of research projects — e.g. Charniak
(1996), Cardie & Pierce (1998), Johnson (1998, 2000), Krotov et al. (2000) — have looked at proba-
bili stic grammars that have been directly derived from bracketted corpora (or treebanks, hence the term

46

“ treebank grammar” coined by Charniak, 1996). The basic idea in grammar derivation from corpora is
simple. For each distinct bracketting found in a corpus, a grammar rule isadded to thegrammar and the
rule’sprobabilit y isderived insomeway (oftenby maximum-likelihoodestimation withsomesmoothing
method) from thefrequency of occurrence of thebracketting in thecorpus. For instance, thebracketting
(NP (DT the) (NN tree)) would yield theproduction ruleNP ! DT NN.

However, becausethenumber of rulesin grammarsderived in thisentirely straightforwardmanner is
infeasibly large at least in the case of the WSJ Corpus, and because their parsing performance moreover
tends to be poor, some techniques are usuall y applied to reduce grammar size and to improve perfor-
mance. Al l approaches edit the corpus in some way, e.g. eliminating singlechild rules, empty category
rules, functional tags, co-indexation tags, and punctuation marks. Different compaction methods (such
aseliminatingruleswith frequency lessthan somen) havebeen investigated that reducethesizeof gram-
mars without too much loss of performance (in particular by Charniak and Krotov et al.). To improve
parsing performance, e.g. Charniak relabels auxiliary verbs with a separate POS-tag and incorporates a
“right-branching correction” into theparser to make it prefer right-branching structures.

Asaresult of such techniques, thefinal grammars for which performanceresultsare reported tend to
have littl ein common with theruleset underlying thecorpus from which they were derived.

Several other grammar building and training methods are similar to treebank grammar construction:
Bod & Scha’s DOP1 method which extracts treefragments rather than rulesfrom corpora, MBL2 methods
(Daelemans et al.) for buildingparsing systemsfrom corpora, and — moregenerall y — any method that
estimates the likelihoodof brackettings(or of brackettingsconverted into taggings) from a corpus, since
such methodsdirectly utili seboth thebrackettingsand their frequencies as found in thecorpus.

Theexisting resultsfor corpus-derived grammarsthat do not undergo significant further development
demonstratetheir limitations: they cannot competewith state-of-the-art parsing results(seeSection 2). It
wil l be argued in thispaper that grammars directly extracted from corporado, however, providea useful
starting point for further automatic grammar construction methods.

Context-f ree grammars that incorporate structural context. It is frequently observed (e.g. Man-
ning & Schütze (1999, p. 416ff)) that PCFGs are inadequate as a grammar formalism because of the
very strong independence assumptions inherent in them, reflecting on the one hand a complete lack of
lexicalisation, and on theother a lack of structuredependence.

It is true that in conventional PCFGs theprobabilit y of, say, a given NP bracketting is independent of
the identity of the head noun as well as its structural context (e.g. whether the NP is in subject or object
position). However, this independence isnot dueto theformal characteristics of PCFGs, but rather to the
way they tend to be used. If the set of nonterminalsof a PCFG does not distinguishbetween, say, NPs in
subject positionand NPs in object position, then theprobabiliti esof any rulescontaining thenonterminal
NP are necessaril y independent of thesubject/object distinction.

However, it is straightforward to introducesuch a dependence into a PCFG by splitting the category
NP into two categories NP-SBJ and NP-OBJ. Similarly, categories (nonterminals) can be divided on the
basis of lexemes, lexical categories or semantic classes.

PCFGsmay not beabletoaccommodate lexical and structural informationin themost elegant fashion,
but thepoint hereisnot about representational eleganceand efficiency. Rather, thefact that PCFGsencode
languages that make up the formal class of context-free languages is entirely separate from their ability
to reflect thedependence of ruleprobabiliti eson lexical and structural context.

Examining different kinds of structural context within the PCFG framework (as done in this paper)
has two advantages: firstly, there are polynomial-time algorithms for finding most likely parses, and
secondly, there is a simple measure of the complexity added to a grammar by the introduction of a
piece of structural information such as thesubject/object distinction,namely theresulting increase in the
number of rules in thegrammar.

Automatic grammar construction. It is sometimes observed that deriving probabili stic grammars
from corpora in the way described above is not an automatic grammar learning method because all that
is done is to extract the PCFG that underlies the corpusand is encoded in its sentences, brackettingsand
occurrencefrequencies. Aswaspointedout above, creating agrammar in thisway issimply oneof many
ways to utili se the brackettings and frequencies of corpora, a feature shared with many computational
learning approaches to automatic grammar construction. However, as previously mentioned, the limita-
tions of grammars directly extracted from corpora indicate that using them as starting points for further
grammar development is themore useful approach.

1Data-Oriented Parsing.
2Memory-BasedLearning.

47

Grammar/Parser Grammar Size performance (WSJ unseen)
LR UR LP UP CB

Fully lexicalised:
Collins(2000) – 90.1 – 90.4 – 0.73
Charniak (2000) – 90.1 – 90.1 – 0.74
Collins(1999) – 88.5 – 88.7 – 0.92
Collins(1997) – 88.1 – 88.6 – 0.91
Charniak (1997) – 87.5 – 87.4 – 1.00
Magerman (1995) SPATTER – 84.6 – 84.9 – 1.26
Nonlexicalised:
Charniak (1996) 10,605 – 78.8 – 80.4 –

without frequency 1 rules 3,943 – 78.2 – 80.7 –
Krotov et al. (2000) 15,420 74.1 77.1 77.4 80.6 2.13

without frequency 1 rules 6,514 74.4 77.5 76.9 80.2 2.18
WSJ 15–18 treebank PCFG 6,135 69.1 – 71.4 – 2.67

Table1: Performance of comparable lexicalised and nonlexicalised grammars on full parsing.

Reference Method LP LR F-Score

Lexicali sed:
Tjong Kim Sang et al. (2000) System combination 94.2 93.6 93.9
Muñoz et al. (1999) SNoW 92.4 93.1 92.8
XTAG Research Group (1998) XTAG + Supertagging 91.8 93.0 92.4
Ramshaw & Marcus(1995) Transformation Based Learning 91.8 92.3 92.0
Veenstra (1998) MBL 89.0 94.3 91.6
Nonlexicalised:
Argamon et al. (1999) MBL 91.6 91.6 91.6
Cardie& Pierce (1998) Error-Driven Grammar Pruning 90.7 91.1 90.9

WSJ 15–18 treebank PCFG 89.2 87.6 88.4

Table2: Performance of comparable lexicalised and nonlexicalised grammars on NP-chunking.

Creating a starting point for grammar learning in thisway isparticularly useful because context-free
grammars cannot be learnt from scratch from data. At thevery least, an upper bound must be placed on
the number of nonterminals allowed. Even when that is done, there is no likelihood that the grammars
resulting from an otherwise unsupervised method wil l look anything like a linguistic grammar whose
parses can providea basis for semantic analysis3.

Parsing with(out) lexical information. Corpus-derived grammars tend to benonlexicalised PCFGs,
hence theexisting research cited above can be seen as investigationsinto theresultsthat can beachieved
in parsing without taking into account lexical information.

In syntactic parsing tasks, nonlexicalised methods are generall y outperformed by lexicalised ap-
proaches. In the case of complete (non-shallow) parsing, nonlexicalised methods are outperformed by
large margins. Table 1 shows an overview of state-of-the-art nonlexicalised and lexicalised results for
statistical parsing systems(U/LR = Un-/LabelledRecall , U/LP= Un-/LabelledPrecision, seeSection 3).
For comparison, the last row of thetableshowsthispaper’sbaselineresult for thecompleteparsing task
(see Section 3.4).

In NP-chunking, a shallow syntactic parsing task that has become a popular research topic over the
last decade (for detail sseeSection 3.2 below), nonlexicalised systemsalso tend to lag behind lexicalised
ones, although by much smaller margins. Table 2 showsa rangeof results for thebaseNP chunking task
and data set given by Ramshaw & Marcus (1995). Again, the corresponding baseline result from this
paper is included in the last row. It is clear from this overview that the difference between lexicalised
and unlexicali sed systems is far smaller for thisparsing task than for completeparsing.

There are several reasons for investigating how well parsers can do without lexicalisation. Apart

3Any linguistic CFG can be converted into a normal form that encodes the same set of sentences, but whose derivations and
substructuresarenot semantically meaningful.

48

from thetheoretical interest, optimisinggrammarsbeforeadding lexicali sationmay improvetheir overall
performance, as lexicalised systems often perform worse than comparable nonlexicalised systems when
the lexical component is taken out. E.g. Collins (1996) includes results for the system with lexical
information removed, which reduces LR from 85.0 to 76.1 and LP from 85.1 to 76.6 in one test – worse
than the comparable results reported below in Section 4.3 (78.78 and 77.16). Furthermore, the results
shown in Tables 1, 2 and 4 indicate that shallow parsing tasks require lexical information to a far lesser
extent than nonshallow ones, so that the added expense of lexicalisation might be avoidable in the case
of such tasks.

3 Grammars, parsing tasks, data and evaluation

3.1 Grammars from corpora

The basic procedureused for deriving PCFGs from WSJ Sections15–18 can besummarised as follows4:

1. In the first step, the corpus is iteratively edited by deleting (i) brackets and labels that correspond
to empty category expansions; (ii) brackets and labels containing a single constitutent that is not
labelled with a POS-tag; (iii) cross-indexation tags; (iv) brackets that become empty through a
deletion; and (v) functional tags.

2. In the second step, each remaining bracketting in the corpus is converted into a production rule.
The rules are divided into nonlexical ones (those that form the grammar), and lexical ones (those
that form the lexicon).

3. In the final step, a complete PCFG is created. The set of lexical rules is converted into a lexicon
with POS-tag frequency information. The set of nonterminals is collected from the set of rules.
Each set is sorted, the number of times each item occurs is determined, and dupli cates are re-
moved. Probabiliti esP for rulesN ! � are calculated from therule frequenciesC by Maximum
Likelihood Estimation (MLE): PMLE(N ! �) = C(N!�)P

i
C(N!�i)

3.2 Four parsing tasks

Resultsare given in thefollowing and subsequent sections for four different parsing tasks:

1. Full parsing: Thetask isto assignacompleteparseto theinput sentence. A full parseisconsidered
100% correct if it is identical to thecorresponding parse given in the WSJ Corpus.

2. Noun phrase identification: The task is to identify in the input sentence all noun phrases, nested
and otherwise, that are given in thecorresponding WSJ Corpusparse.

3. Complete text chunking: This task was first defined in Tjong Kim Sang & Buchholz (2000), and
involves dividing a sentence into flat chunks of 11 different types. The target parses are derived
from WSJ parses by adeterministic conversion procedure.

4. Base noun phrase identification: First defined by Abney (1991), thistask involves therecognition
of non-recursive noun phrase chunks (so-called baseNPs). Target parses are derived from WSJ

parses by a simpleconversion procedure.

3.3 Data and evaluation

Sections15–18of theWall Street Journal (WSJ) corpuswereused for grammar derivation, and Section 01
from the same corpus was used for testing parsing performance. Parsing performance was tested with
the commonly used eval b program by Sekine & Collins5. The program evaluates parses in terms of
the standard PARSEVAL evaluation metrics Precision, Recall and crossing brackets. For a parseP and a
corresponding target parseT , Precision measures the percentage of brackets in P that match the target
brackettingsin T . Recall is thepercentage of brackettingsfrom T that are inP . Crossing brackets gives
the average number of constituents in one parse tree that cross over constituent boundaries in the other
tree. (See e.g. Manning & Schütze (1999), p. 432–434.)

For Precision and Recall there are unlabelled and labelled variants. In the latter, both the pair of
brackets and the constituent label on the bracket pair have to be correct for the bracketting to be correct,

4Throughout this paper, WSJ refers to thePENN II Treebank version.
5Availablefrom http://cs.nyu.edu/cs/projects/proteus/evalb/ .

49

whereas in the unlabelled variant only the brackets have to be correct. In this paper, unless otherwise
stated, Precision and Recall always mean Labelled Precision and Recall , in particular, all new results
presented are the labelled variants. Precision and Recall are commonly combined into a singlemeasure,
called F-Score, given by (�2+1)�Precision �Recall=� 2 (Precision +Recall). In thispaper, � = 1
throughout.

Al l grammars tested are nonlexicalised, therefore input sentences are sequences of POS-tags not
words. In the tests, sentences of a length above 40 words(consistently close to 7.5% of all sentences in
a corpussection) were left out. Al l grammars are formally probabili sticcontext-freegrammars (PCFGS).
The parsing package LoPar (Schmid (2000)) was used to obtain Viterbi parses for data sets and gram-
mars. If LoPar failed to find a complete parse for a sentence, a simple grammar extension method was
used to obtain partial parses instead.

3.4 Baseline

A baseline grammar “BARE” was extracted from WSJ Sections 15–18 by the method described in Sec-
tion 3.1, applied to the four parsing tasks defined in Section 3.2, and tested and evaluated as desribed in
the preceding section. Thisyielded thefollowing set of resultswhich formsthebaseline for thepurpose
of thispaper. (Results include9 partial parses.)

Full parsing NP identification BaseNP chunking Complete text chunking
LR LP F LR LP F LR LP F LR LP F

69.08 71.43 70.24 74.97 81.62 78.15 87.6 89.21 88.4 89.63 88.99 89.31

4 Introducing structura l context into PCFGs

4.1 Diff erent typesof structural context

In thissection, theeffects of introducingthreedifferent typesof structural context (SC) into PCFG BARE
are examined: (i) thegrammatical function of phrases, (ii) their depth in theparse tree, and (iii) thecate-
gory of theparent phrase. Al l threetypesof structural context are local to the immediateneighbourhood
of thephrasenodefor which they providetheexpansion probabilit y conditions. Other local SC typesthat
could be considered include position among the children of the parent node, and identity of immediate
sibling nodes. Useful nonlocal SC types might be the identity of more distant ancestors than the parent
node and of more distant sibling nodes.

Grammatical function. Asmentioned above, the WSJ corpussubdividesstandard phrase categories
such as NP by attaching functional tags to them that reflect thegrammatical function of thecategory, e.g.
NP-SBJ and NP-OBJ. However, thecorpus isnot consistently annotated in thisfashion (thesame typeof
phrase may have zero, oneor morefunctional tags). Parsing results for grammar FTAGSmight bebetter
if thegrammar isderived from a moreconsistently annotated corpus.

Therule that expandsanoun phraseto apersonal pronoun isastrong example of theextent to which
grammatical function can affect expansion probabiliti es. In the WSJ, 13.7% of all NPs expand to PRP
as subject, compared to only 2.1% as object. Of all object NPs, 13.4% expand to PRP as first object,
compared to 0.9% as second object (source: Manning & Schuetze, 1999. p. 420).

Depth of embedding. The depth of embedding of a phrase isdetermined as follows. The outermost
bracketting (corresponding to the top of the parse tree) is at depth 1, its immediate constituents are at
depth 2, and so on. In the parsed sentence (S (NP (DT the) (NN cat)) (V P (VBD sat) (PP

(I N on) (NP (DT the) (NN mat))))) , S is at depth 1, the first occurrences of NP and VP are at
depth 2, the first occurrences of DT and NN as well as VBD and PP at depth 3, I N and the second NP at
depth 4, and thesecond occurrences of DT and NN are at depth 5.

It is not obvious that the depth of embedding of a phrase captures linguisticall y meaningful parts of
its local structural context. However, different phrases of the same category do occur at certain depths
with higher frequency than at others. This ismost intuitively clear in thecase of NPs, where subject NPs
occur at depth 2, whereas object NPs occur at lower depths.

Moresurprisingly, VPstoo havepreferencesfor occurringat certain levels. Table3 (previously shown
in Belz (2000, p. 49)) providesclear evidence of this. The first column showsthe six most frequent WSJ

VP expansion rules, the second column shows their canonical probabiliti es (calculated over all WSJ VP

rules). The remaining columns show how these probabiliti es change if they are made conditional on
depths of embedding 2–7. For each depth, the highest rule probabilit y is highlighted in boldface font,

50

Depth of Embedding
2 3 4 5 6 7

p(VP! TO VP) 0.089 0.004 0.067 0.136 0.127 0.135 0.130
p(VP!MD VP) 0.056 0.075 0.043 0.055 0.062 0.050 0.047
p(VP! VB NP) 0.054 0.001 0.036 0.052 0.073 0.088 0.096
p(VP! VBN PP) 0.039 0.004 0.049 0.047 0.042 0.044 0.055
p(VP! VBZ VP) 0.038 0.069 0.034 0.037 0.025 0.023 0.021
p(VP! VBD S) 0.026 0.090 0.016 0.005 0.005 0.004 0.003

Table3: Ruleprobabiliti esat different depthsof embedding for 6 common VPrules.

and the second highest in itali cs. At depth 2, for instance, the most likely rule is the one with the fourth
highest canonical probabilit y, and at depth 5, thesecond most likely rule istheonewith thethird highest
canonical probabilit y. In fact, there is only one depth (4) at which rule probablities appear in their
canonical order, which shows how strongly even VP rulesare affected by depth of embedding.

Parent node. The parent node of a phrase is the category of the phrase that immediately con-
tains it. In (S (NP (DT the) (NN cat)) (V P (VBD sat) (P P (I N on) (NP (DT the) (NN

mat))))) S is the parent of NP and VP, VP is the parent of PP, which is the parent of NP. Thus, dis-
tinguishing between NP-S (an NP with S as its parent) and NP-PP captures part of the subject/object
distinction.

The advantageof using parent node information was previously noted by Johnson6 (1998).

4.2 Four LSC-Grammars

Grammars incorporating local structural context — or LSC grammars — wereextracted from thecorpus
by the same procedure as described in Section 3.1 above, except that during Step 2, each bracket label
that isnot a POS tag wasannotated with a tag representing therequired typeof LSC.

Four different grammars were derived in this way, PCFGs FTAGS, DOE, PN and DOEPN. Al l four
grammars incorporate the functional tags present in the WSJ Corpus. Additionall y, for grammar DOE,
each nonterminal was annotated with a tag representing the depth of embedding at which it was found,
for grammar PN, nonterminals were annotated with tags encoding their parent node, and for grammar
DOEPN, nonterminalswere given both depth and parent node tags. The resulting grammars are signifi-
cantly larger than the baselinegrammar BARE. Grammar sizes and numbersof nonterminals (excluding
POS tags) are as follows:

Grammar Type BARE FTAGS DOE PN DOEPN
Size (n rules) 6,135 10,118 21,995 16,480 33,101
Nonterminals 26 147 1,104 970 4,015

4.3 Performance on parsing tasks

In calculating labelled bracketting Recall and Precision for the LSC-grammar results, all labels starting
with the same category prefix, e.g. NP, are considered equivalent (standard in evalb). The idea is that
the additional information encoded in the LSC-tags attached to category labels helps select the correct
parse, not that it should be retained in the annotation for further analysis. Table 4 shows parsing results
for the unseen data in WSJ Section 01 (the results for baseline grammar BARE are also included for
comparison). Best F-Scores are highlighted in boldfacefont, and second-best F-Scores in itali cs.

Thebest results in Table4 arebetter than thosereported by Charniak (1996) and Krotov et al. (2000),
even though the previousresults were obtained after using ca. 10/11 of the WSJ corpus as a training set
(compared to 3/25 used here):

UF LF
Krotov et al. (2000) 79.12 76.09
Charniak (1996) 79.59 –
PN-Grammar 80.51 77.96

6Johnsoncalls it grandparent node, but meansthesamething.

51

Grammar Type BARE FTAGS DOE PN DOEPN

Partial parses 9 9 25 20 62
Full parsing:
LR 69.08 71.41 72.72 78.78 74.33
LP 71.43 73.06 71.9 77.16 70.61
F-Score 70.24 72.23 72.31 77.96 72.42
Crossing brackets 2.76 2.51 2.53 1.91 2.59
% 0 CBs 32.34 35.43 35.75 44.40 37.0
NP identification:
LR 74.97 77.22 78.2 83.86 81.02
LP 81.62 81.02 77.56 81.22 74.30
F-Score 78.15 79.07 77.88 82.52 77.51
BaseNP chunking:
LR 87.6 87.35 87.02 90.27 87.05
LP 89.21 88.68 87.03 89.52 84.11
F-Score 88.4 88.01 87.02 89.89 85.55
Complete text chunking:
LR 89.63 89.49 89.17 90.84 89.24
LP 88.99 88.64 87.28 89.46 85.85
F-Score 89.31 89.06 88.21 90.14 87.51

Table4: Parsing resultsfor thefour LSC-grammars and WSJ Section 01.

Incorporating different types of LSC affects results for the four parsing tasks in different ways. It is
clear from the results in Table 4 that some kindsof contextual information are useful for some tasks but
not for others. For example, adding parent phrase information improved results (from grammar BARE
to grammar PN) by almost 8 points(F-Score70.24 to 77.96) for thecomplete parsing task, by about 4.5
points (F-Score 78.15 to 82.52) for NP identification, by 1.5 points (F-Score 88.4 to 89.89) for baseNP
chunking, and by just under one point (F-Score 89.31 to 90.14) for complete text chunking.

It is likely that adding depth of embedding information indiscriminately (as in grammars DOE and
DOEPN) results in overspecialisation. Looking at results for seen data(part of thetraining corpus) con-
firmsthis. Table5 showsresultsfor thebaselinegrammar and thefour LSC grammarson WSJ Section 15,
i.e. one of the sections used during grammar derivation. On seen data, grammar DOEPN performs best
on all parsing tasks. Tables 4 and 5 together imply that adding depth of embedding information for all
depths to all rulessimply overfits thetraining dataand results in undergeneralisation.

Similarly, it is likely that not all the information added in the four LSC grammars is useful for all
parsing tasks. Distinguishing 27 depths of embedding is probably too much for all parsing tasks, e.g.
distinguishingdepthsabove20 isgenerall y unlikely to beuseful, astheoccurrenceof rulesat such depths
is rare. Techniques for eliminating the information that makes no useful contribution for agiven parsing
task are discussed in thefollowing section.

5 Automatic optimisation of LSC-Grammars

5.1 In itial assumptions

If it is truethat someof theLSC informationadded to thegrammars tested so far makes littl eor no contri-
bution to agrammar’sperformanceon agiven parsing task, then it should bepossibleto reducegrammar
size without loss of parsing performance by selectively taking out some of the added information. At
the same time, if it is true that some of the LSC-grammars are overspecialised (overfit the data), then it
should bepossible to improve thegrammar’s performance by selectively generalising them.

Aspointed out above in Section 4.3, it isclear from theLSC resultsthat adding different kindsof LSC

information to a grammar has different effects on theresults for different parsing tasks. It should there-
forebe possibleto optimisea grammar for a given parsing task by selectively taking out theinformation
that is not useful for the given task. The idea behind the experiments reported in the following section
was to see to what extent the LSC grammars can be optimised in terms of size and parsing performance
by grammar partitioningfor each of theparsing tasks.

52

Grammar Type BARE FTAGS DOE PN DOEPN

Partial parses 0 0 0 0 0
Full Parsing:
LR 71.48 75.15 82.81 84.64 90.39
LP 75.03 78.64 84.86 85.94 91.43
F-Score 73.21 76.86 83.82 85.29 90.91
Crossing brackets 2.57 2.15 1.37 1.31 0.75
% 0 CBs 34.48 41.85 56.31 57.33 73.46
NP identification:
LR 76.54 79.26 84.51 87.46 91.17
LP 84.89 85.61 88.79 88.75 92.61
F-Score 80.5 82.31 86.6 88.1 91.88
BaseNP chunking:
LR 90.21 90.28 92.68 94.40 95.99
LP 92.59 92.70 94.54 95.66 97.19
F-Score 91.38 91.47 93.60 95.03 96.59
Complete text chunking:
LR 91.68 91.67 93.59 94.25 96.45
LP 92.46 92.56 94.19 95.02 96.84
F-Score 92.07 92.11 93.89 94.63 96.64

Table5: Parsing resultsfor the LSC-grammars and WSJ Section 15 (seen data).

5.2 Prelimi nary definitions

The addition of structural context as described in previous sections can be viewed in terms of split
operations on nonterminals, e.g. in the FTAGSgrammar, the nonterminal NP is split into NP-SUBJ and
NP-OBJ (among others). This results in grammar specialisation, i.e. the new grammar parses a subset
of the set of sentences parsed by the original one. The reverse, replacing NP-SUBJ and NP-OBJ with a
single nonterminal NP, can be seen as a merge operation, and results in grammar generali sation, i.e. the
new grammar parses a superset of thesentences parsed by theoriginal one.

An arbitrary number of such merge operationscan berepresented by apartition on theset of nonter-
minals of agrammar. A partition isdefined as follows.

Definition 1 Partition

A partition of a nonempty set A is a subset � of 2A such that ; is not an element of � and
each element of A is in oneand only oneset in �.

PCFGs can bedefined as follows.

Definition 2 Probabili sticContext-FreeGrammar (PCFG)

A PCFGs isa4-tuple(W;N ;NS ; R), whereW isaset of terminal symbolsfw1; : : : wug,N
isaset of nonterminal symbolsfn1; : : : nvg,NS � N isaset of start symbolsfns1; : : : n

s
vg,

undR isa set of rules with associated probabiliti esf(r1; p(r1)); : : : (r1; p(rx))g. Each rule
r is of the form n ! �, where � is a sequence of terminals and nonterminals. For each
nonterminal n, thevaluesof all p(n! �i) sum to one.

Given a PCFGG = (W;N ;NS ; R) and a partition �N = fN1; : : : Nvg of the set of nonterminals
N , thepartitioned PCFGG0 = (W;N 0; NS 0; R0) isderived by thefollowingprocedure:

1. Assign a new nonterminal name to each of thenon-singletonelements of �N .

2. For each ruleri inR, and for each nonterminal nj in ri, if nj is in anon-singletonelement of �N ,
replace it with thecorresponding new nonterminal.

3. Find all rulesin R of which therearemultipleoccurrencesasaresult of thesubstitutionsin Step 2,
sum their frequencies and recalculate the ruleprobabiliti es.

53

If start symbols are permitted to be merged with non-start symbols, then there are two ways of
determining the probabilit y of a rule expanding the nonterminal resulting from such a merge: either its
frequency is the sum of the frequencies of all nonterminals in the merge set, or it is the sum of just the
frequenciesof thestart symbolsin themergeset. Thelatter optionwaschosen in thetestsreportedbelow.

5.3 “ Proof of concept”

The discussion and results in this section provide preliminary confirmation of the prediction made in
Section 4.3 that for the different LSC grammars there exist (non-trivial) partitions that outperform the
original base grammar. More formally, the “proof of concept” provided below shows the following for
most of thegrammar/task combinations:

Given a base grammar G = (W;N ;NS ; R) and aparsing task P , a partition of the set of
nonterminalsN can befound such that thederived grammar G0 = (W;N 0; NS0; R0)

1. issmaller thanG (i.e. jR0j < jRj), and

2. performsbetter thanG onP .

Some of the five LSC-PCFGs can be derived by partition from one of the others. For example, BARE
can be derived from all others, FTAGS can be derived from DOE, PN and DOEPN, and DOE and PN
can both be derived from DOEPN. This means that for some of the grammars, the results given in
Section 4.3 in themselves show that there exists at least one (non-trivial) partition that is smaller than
and outperformsthe original grammar. E.g. for the baseNP chunking task, the partition that derives PN
from DOEPN achieves nearly a3 point improvement (F-Score 87.63 to 90.23), whilereducing grammar
size from 33,101 rules to 16,480, and thenumber of non-terminalsfrom 4,015 to 970.

In the remainder of this section it is shown that there are other partitionsof the DOE grammar that
improves itsperformance and reduces itssize.

Grammar type Depth bands Grammar size Nonterminals

DOE 1, 2, . . .27 21,995 1,104
1, 2, 3, rest 12,933 312

1, 2, rest 11,254 224
1, rest 10,165 170

FTAGS – 10,118 147
BARE – 6,135 26

Table6: Sizes and depth bandsof DOE grammar and 5 of itspartitions.

From the parsing results for the DOE grammar it appears that indiscriminately adding depth of em-
bedding information does not help improve parsing performance for shallow parsing tasks on unseen
data: while there is a significant improvement for the complete parsing task (F-Score 70.24 to 72.31),
theF-Scores for theother threeparsing tasksare worse. That there isany improvement showsthat some
useful information is added. It is likely that distinguishing all depths simply leads to overspecialisa-
tion of the grammar, resulting in a large increase in parse failureson the one hand, and the selection of
bad, previously unlikely, parses on the other. If this is so then partitioning theDOE grammar in a way
equivalent to distinguishingbroader depth bandsrather than each individual depth wil l improveresults.

To test this hypothesis, three different partitionsof the DOE grammar were created. The partitions
(too large to beshown in their entirety) correspond to distinguishingbetween thedifferent depthsshown
in thesecond column of Table6, e.g. in thecase of thefourth row, all nonterminalsNT-n with adepth tag
n greater than 1 are merged into a single nonterminal NT-rest. The last two columns show the number
of rules and nonterminals in each grammar. The last two rows show the corresponding numbers for the
BARE and FTAGSgrammars (DOE-typegrammars all incorporate functional tags).

ThepartitionedDOEgrammarsall improveresults(compared to grammarsBARE, FTAGS, andDOE)
for the full parsing task, with the DOE-f1, 2, restg grammar performing the best. For the NP identifi-
cation task, grammar DOE achieved a worse F-Score than grammar BARE, yet all the partitioned DOE
grammars achieve a better F-Score than grammar BARE, with the DOE-f1, 2, restg grammar again per-
forming the best. On the baseNP chunking task and the complete text chunking task, grammar BARE
performs the best, but all the derived DOE grammars outperform the nonpartitioned DOE grammar. On

54

Grammar Type BARE FTAGS DOE DOE-f1,rg DOE-f1,2,rg DOE-f1, 2, 3, rg

Full Parsing:
LR 69.08 71.41 72.72 73.35 74.13 74.14
LP 71.43 73.06 71.9 74.48 75.1 74.73
F-Score 70.24 72.23 72.31 73.91 74.61 74.43
Crossing brackets 2.76 2.51 2.53 2.32 2.19 2.21
% 0 CBs 32.34 35.43 35.75 38.83 39.1 38.56
NP identification:
LR 74.97 77.22 78.2 77.39 77.95 78.29
LP 81.62 81.02 77.56 81.20 81.31 80.85
F-Score 78.15 79.07 77.88 79.25 79.59 79.55
BaseNP chunking:
LR 87.6 87.35 87.02 87.82 87.73 87.74
LP 89.21 88.68 87.03 88.93 88.59 88.11
F-Score 88.4 88.01 87.02 88.37 88.16 87.93
Complete text chunking:
LR 89.63 89.49 89.17 89.58 89.71 89.70
LP 88.99 88.64 87.28 88.54 88.52 88.29
F-Score 89.31 89.06 88.21 89.06 89.11 88.99

Table 7: Parsing resultsof DOE grammar and 5of itspartitions.

{ {0}, {1}, {2} }

 { {0,2}, {2} } { {1,2}, {0} } { {0,1}, {2} }

 { {0,1,2} } { {0,1,2} } { {0,1,2} }

Figure1: Partition tree for aset with threeelements.

thebaseNP chunking task, theBARE grammar’sF-Score isclosely matched by theDOE-f1, restg gram-
mar. These results show that partitionscan be found that not only drastically reduce grammar size but
also significantly improve parsing performance on a given parsing task.

5.4 Search for optimal part ition of LSC-Grammars

Given. A PCFGG = (W;N ;NS ; R), a dataset D, and a set of target parsesDT for D.
Search space. The search space is defined as the partition tree for the set of nonterminalsN in the

given grammarG. Each nodein thetree isoneof thepartitionsof N , such that each node’spartitionhas
fewer elements than all of itsancestors, and the partition at each node can be derived from itsparent by
merging two elements of theparent’spartition.

The single node at the top of the tree is the trivial partition corresponding toN itself . Each node is
the parent of 1

2(n
2 � n) child nodes, where n is the number of elements in the parent partition. Each

level reduces thenumber of statesby one. The completepartition treefor aset with threeelements looks
as shown in Figure1.

Search method. The partition tree is searched top-down by a variant of beam search. A li st of the
n current best candidate partitions is maintained (initiali sed to the trivial partition). For each of the n
current best partitions a subset of size b of its children in the partition tree is generated and evaluated
(b thus defines the width of the beam). From the set of current best partitionsand the newly generated
candidate partitions, then best elements are selected and form the new current best set. This process is
iterated until either no new partitions can be generated that are better than their parents, or the lowest
level of thepartition tree is reached.

In the current version of the evaluation function, only the F-Score achieved by candidate solutions
on the test data is taken into account. Search stops if in any iteration (depth of the partition tree) no

55

solution is found that outperforms the current best solutions. That is, size is not explicitl y evaluated at
all . Candidate solutions are evaluated on a subset of the test data, because evaluating each candidate
solution on all 1,993 sentences of WSJ Section 01 makes thecost of thesearch procedureprohibitive.

Thereare threevariableparameters in thepartition treesearch procedure: (i) thenumber n partitions
(nodes in the tree) that are further explored, (ii) the size x of the subset of the test data that candidate
solutionsare evaluated on, and (ii) thewidth b of thebeam.

5.5 Results for LSC-Grammar optimisation by search of partitio n tree

Table 8 shows some results for automatic optimisation experiments carried out for grammar PN and the
baseNPchunkingand completetext chunkingtasks. Thefirst threecolumnsshow thevariableparameters
b (beam width),n (sizeof li st of best solutionsmaintained), andx (sizeof datasubset used inevaluation).
The fourth column shows the number of runs results are averaged over, and the fifth and sixth columns
show the number of iterations and evaluations carried out before search stopped. Column 7 gives the
average number of nonterminals thebest solution grammars had, and column 8 their average evaluation
score. The last two columns show the overall change in F-Score (calculated on all of WSJ Section 01)
and grammar size for thegiven grammar and parsing task.

Var. Parameters Runs Iter. Eval. Nonterms F-Score (sub) F-Score +/- Size+/-
b n x

Grammar: PN; Grammar Size: 16,480/970
Task: BaseNP chunking; F-Score: 89.89

100 2 50 4 4 45 968.25 95.93 +0.032 (89.92) -0.25
100 10 50 4 6.75 341.5 967.25 97.25 +0.048 (89.94) -2
500 1 50 4 5.25 499 967.5 97.49 +0.06 (89.95) -2.25

Grammar: PN; Grammar Size: 16,480/970
Task: CompleteText Chunking; F-Score: 90.14

1,000 1 10 4 5 523.75 967 100.00 +0.06 (90.2) -0.75

Table8: Resultsfor automatic optimisation tests.

Current resultsshow insensitivity to theprecisevaluesof parameters b andn. What appears to matter
is just the total number of evaluations, results being better the more candidate solutions are evaluated.
Results indicate a greater sensitivity to the value of x: a data subset size of 10 is clearly too small , as
search quickly findssolutionswith an F-Score of 100 and then stops(last row of Table 8).

Overall , results are not nearly as good as might have been expected after the preliminary tests de-
scribed above. Only small numbers of nonterminals were merged, and small improvements achieved,
before search stopped. However, the fact that every single run achieved an F-Score improvement and
almsot all runs resulted in a decrease in grammar size even for small numbers of merged nonterminals
indicates that thebasic approach is right, but that some way has to befound of overcoming the local op-
timaon which search in thereported experimentsstopped, by widening thewidth of thebeam, changing
the evaluation function, or by using a more sophisticated search method.

6 Conclusionsand further research

The first part of thispaper looked at the effect of adding three different kindsof local structural context
— grammatical function, parent nodeand depth of embedding — to abasic PCFG derived from theWall
Street Journal Corpus. Grammars were tested on four different parsing task differing in complexity and
shallowness. Resultsshowed that all threetypesof context improveperformanceon thecompleteparsing
task, but that only parent node information improves performance on all parsing tasks. The PCFG with
parent node information was particularly successful and achieved better results on the complete parsing
task than thebest previously published results for nonlexicalised grammars and WSJ corpus data.

In thesecond part of thepaper, anew method for optimisingPCFGs wasintroduced that hastheeffect
of overcoming overspeciali sation by generalising grammars. It was shown that partitionscan be found
that drasticall y reduce grammar size and significantly improve parsing performance. First results were
reported for applying an automatic search method to a PCFG that incorporates parent node information,

56

and thetasksof baseNPchunking and completetext chunking. Resultsarepromising, but indicatethat in
order to achieve radical improvements in parsing performance and grammar size, a different evaluation
function and/or moresophisticated search methodsmay berequired.

7 Acknowledgements

The research reported in this paper was carried out as part of the Learning Computational Grammars
Project funded under theEuropean Union’sTMR programme (Grant No. ERBFMRXCT980237).

References

Krotov A, Hepple M, Gaizauskas R, Wilks Y. 2000. Evaluating two methods for treebank grammar
compaction. Natural LanguageEngineering, 5(4):377–394.

Belz A. 2000. Computational Learning of FiniteStateModelsfor Natural LanguageProcessing. Ph.D.
thesis, COGS, University of Sussex.

Cardie C, Pierce D. 1998. Error-driven pruning of treebank grammars for base noun phrase identifica-
tion. In Proceedings of COLING-ACL ’98, pp 218–224.

Manning C, Schütze H. 1999. Foundationsof Statistical Natural LanguageProcessing. MIT Press.

Tjong Kim Sang E, Buchholz S. 2000. Introduction to the CoNLL-2000 shared task: Chunking. In
Proceedings of CoNLL-2000 and LLL-2000, pp 127–132.

Charniak E. 1996. Tree-bank grammars. Technical Report CS-96-02, Department of Computer Science,
Brown University.

Charniak E. 1997. Statistical parsing with a context-free grammar and word statistics. In Proceedings
of NCAI-1997, pp 598–603.

Charniak E. 2000. A maximum-entropy-inspired parser. In Proceedings of NAACL-2000, pp 132–139.

Schmid H. 2000. LoPar: Design and implementation. Bericht des Sonderforschungsbereiches
“Sprachtheoretische Grundlagen für die Computerlinguistik” 149, Institute for Computational Linguis-
tics, University of Stuttgart.

Ramshaw L, Mitchell M. 1995. Text chunking using transformation-based learning. In Proceedings of
the Third ACL Workshop on Very LargeCorpora, pp 82–94. Association for Computational Linguistics.

Collins M. 1997. Three generative, lexicalised models for statistical parsing. In Proceedings of ACL
and EACL ’97, pp 16–23.

Johnson M. 1998. The effect of alternative tree representationson tree bank grammars. In Proceedings
of theJoint Conference on New methodsin LanguageProcessing and Computational Natural Language
Learning (NeMLaP3/CoNLL’98), pp 39–48.

CollinsM. 1999. Head-driven statistical modelsfor natural languageparsing. Ph.D. thesis, Department
of Computer and Information Science, University of Pennsylvania.

CollinsM. 2000. Discriminativereranking for natural languageparsing. In Proceedings of ICML 2000.

Abney S. 1991. Parsing by chunks. In Berwick R, Abney S, Tenny C (eds), Principle-Based Parsing,
pp 257–278. Kluwer.

57

