Introducing nora: A Textmining Tool for Literary Scholars

Tom Horton Dept. of Computer Science University of Virginia horton@cs.virginia.edu

Talk Outline

- About the nora project
- Text mining and literary research
 - Process of text-mining and analysis
 - Text-mining outputs and their use
 - Examples of results
- Software for end-users
- Software architecture
- Issues and lessons learned

nora Project Goals

- Develop tools that
 - solve problems of interest to literary scholars
 - making use of existing digital library resources
- Text-mining (TM):
 - Develop tools and an architecture to allow non-specialists to use TM
 - provocational text-mining to support literary interpretation

About the nora project

- http://www.noraproject.org
- Funded by the Andrew W Mellon Foundation
- Multidisciplinary participants from five universities
 - Illinois at Urbana-Champaign, Alberta, Georgia, Maryland, Virginia
 - Led by John Unsworth
- Areas of activity:
 - Technical: text-mining, SW architecture, visualization, user studies, interface design
 - Literary: Emily Dickinson; sentimentalism; Virginia Woolfe; vocabulary of literary criticism...

nora Participants

- Univ. of Illinois at Urbana-Champaign
 - Director: John Unsworth
 - Data mining: Bei Yu, Loretta Auvril
 - Software: Xin Xiang, Amit Kumar
- Univ. of Maryland
 - Literary: Matt Kirschenbaum, Martha Nell Smith, Tanya Clement, ...
 - Software and usability: Catherine Plaisant, James Rose

nora Participants

- Univ. of Georgia
 - Software and literary: Steve Ramsay, Sara Steger
- Univ. of Alberta
 - Interface design: Stan Rueker and team
- Univ. of Virginia
 - Literary: Kristen Taylor and others
 - Data mining and software: Tom Horton

Part 1:

- Text-mining for literary research
 - Example: Sentimentalism
 - Other examples:
 - Eroticism in Emily Dickinson
 - Vocabulary in papers on literary criticism

Some Project Assumptions

- Users: literary scholars
 - Interested in exploration, provocation
 - Not in: decision making, quantification (perhaps including corpus characteristics)
- Data sources: existing digital libraries
 - Not under user's direct control
 - Can't modify them
 - nora applications to be eventually deployed with at a DL's site

Example: nora's Sentimentalism Study

- Apply nora ideas to a set of 19th century novels in the Early American Fiction digital library
- Help scholars better understand sentimentalism in a core set of highly sentimental novels
- Identify seemingly sentimental parts of other documents
 - help prove the usefulness of TM in literary criticism

What is Sentimentalism?

- Term "sentimental novel" first applied to 18th century texts
 - Feeling is valued over reason
 - Author attempts to induce a specific response from the reader
 - Often for a cause: anti-slavery, female education, temperance, etc.
 - Conventional plot devices, characters, repetitions
 - Explicit authorial interventions

Why It's an Interesting Problem

- Some novels were hugely popular in the US
- Many novels written by women
- Social issues: e.g. slavery
- Solidification of novel form, and predecessor to Victorian period
- Often used as a derogatory term
 - both then and now
 - but increased recent interest

Text-Mining for Such Problems

- Data-mining on documents
 - So far: Data ("features") are vocabulary-based
 - Our first analyses do not use POS, parsing, etc.
- Possible goals:
 - Classification: From a small set of "known" results, make predictions about "unknown" results
 - Explanation?
 - Clustering: Group or organize unknown results based on non-obvious similarities

Our Process using TM

- 1. Choose a training-set of novels
- 2. Scholars assign a numeric <u>score</u> indicating degree of sentimentality for each chapter
- 3. Run a particular text-mining <u>algorithm</u>
 - Using the set of chapters with their scores to create a <u>classification model</u>
- 4. Evaluate text-mining outputs
 - from a TM perspective
 - from a literary perspective by applying traditional scholarship using TM results as a starting point

Text-Mining Outputs

- 1. Measures of whether a model can be built that successfully classifies the training-set
 - For the set of chapters, how often does the TM classification result match the scholar's assignment?
- 2. A numeric score indicating the degree that a chapter seems sentimental (or not)
 - What's most sentimental? Least? What's the pattern?
- 3. Predictors: vocabulary ordered to show which words contribute most or least to assigning each chapter
 - Possibly a form of explanation for the scholar

Keep In Mind:

- Our use of TM is for:
 - Provocation, exploration
- We don't assume or propose a particular "ground truth"
 - Scholars are free to assign their own scores for what is and isn't sentimental
 - Our software tools will allow iteration and exploration
 - Prediction results are to serve as starting point for close-reading and analysis
 - Show me "more like these"
 - Predictors may or may not lead to satisfying explanation

Sentimental Experiment Plan

- Experiment 1:
 - Goal: To evaluate the use of text-mining on a small set of "core" sentimental novels.
 - Scholars assign a score or label for each chapter in five novels
 - Run text-mining and see what we learn about the methods and the novels

Experiments To Come

- Experiment 2:
 - More sentimental novels in the TM test-set (i.e. not scored initially)
 - Evaluate prediction:
 - Use the TM model from initial training-set of novels
 - Predict which chapters from test-set are most and least sentimental, and explore those novels
 - Examine if predictors from training-set generalize to new documents
- Experiment 3:
 - Apply to works perceived to not be sentimental

Scoring Test-Set Chapters

- Scores assigned by graduate students from the English department
 - Two scorers per chapter
 - Results averaged. Disagreements reconciled.
- Scored initially on scale of 1 to 10
 - Converted to High/Medium/Low
 - Eventually TM run as a two-class problem: High vs. Medium/Low

Reminder: Text-Mining Outputs

- 1. Measures of whether a model can be built that successfully classifies the training-set
 - For the set of chapters, how often does the TM classification result match the scholar's assignment?
- 2. A numeric score indicating the degree that a chapter seems sentimental (or not)
 - What's most sentimental? Least? What's the pattern?
- 3. Predictors: vocabulary ordered to show which words contribute most or least to assigning each chapter
 - Possibly a form of explanation for the scholar

Results: Classification Accuracy

- From a TM perspective
 - Classification model not as successful as we'd like when re-classifying test-set chapters
 - A concern?
 - We're exploring why and looking for better methods
 - Proper nouns, part of speech, SVM vs. Naïve Bayes
 - But we still believe this is a useful starting point for literary analysis

Results: Classification of Chapters

- Using the Naïve Bayes DM method
 - Each chapter gets a score
 - Positive means not highly-sentimental
 - Negative means highly-sentimental
 - How far from zero can be interpreted as a relative degree as calculated by the TM algorithm
 - Recall our scholars' scores were used as yes/no

Change During a Novel

- Stowe's two novels show more by-chapter variation than Rowson's works
 - UTC has fluctuation between highly-sentimental episodes with scenes of minstrelsy or humor
 - The Minister's Wooing shares this flow (though about marriage)
- Reminder: negative means more sentimental

Vocabulary Predictors

- Recall the NB method for TM ranks words by how strongly they indicate sentimental or notsentimental
- Highly-sentimental words include proper names
 - Makes sense: particular characters appear in highly sentimental chapters
 - Won't lead to models that generalize well for new novels
 - A solution: use part-of-speech tagging to ignore proper-nouns for TM

Predictors: What do They Tell Us?

- The list of words and how strongly they indicate sentimentality (or not)
 - Can they "explain" results in a way that interests or informs a literary scholar?
- The verdict:
 - Maybe! (Not clear yet.)
 - Close vocabulary study needed.
 - SVM vs. Naïve Bayes TM methods
 - Part of speech tagging, stop words

Restricting TM to Certain POS

- 8453 word-types when restricted by POS:
 - Nouns, adjectives, adverbs (no proper nouns)

Rank	Feature	Rank	Feature	Rank	Feature
1	senator	18	pitying	35	clairvo yant
	measured	19	VOW	36	intently
3	paternal	20	toilette	37	suspense
4	auctioneer	21	prayer-meeting	38	kneeling
5	payment	22	Spirit	39	writer
6	incidents	23	impulsive	40	beloved
7	shrink	24	pearls	41	necessities
8	storms	25	painfully	42	alabaster
9	weaker	26	hesitating	43	renew
10	spared	27	agency	44	straits
11	reverie	28	violating	45	overpowered
12	aged	29	wildness	46	build
13	anguish	30	mon	47	radiance
14	nest	31	intensity	48	giveth
15	infamy	32	enfant	49	drooped
16	retained	33	exchanged	50	pain
17	neatness	34	hence		

Part 2: SW Apps and Architecture

- The noravis application developed at the Univ. of Maryland (for Dickinson study)
 - Support scholars with minimal knowledge of text-mining
 - Allow them to label or score documents, then run text-mining classification
 - And repeat this process iteratively
 - See classification of un-labeled documents
 - See significant vocabulary features
 - Read documents

Will Literary Scholars Read This?

Prob.	Ratio	ID_Label	Pred.	Wrong?
-17394.99615	-289.385218	Jeaf490_2	н	н
-9135.329147	-172.7576762	eaf325_7	н	н
-8380.789049	20.29566524	eaf325_8	Μ	М
-8958.350474	-267.7518636	eaf325_22	н	н
-23085.09238	-347.0904289	Jeaf490_18	н	н
-46034.85412	1067.896704	Seaf709_20	Μ	М
-11387.55962	-239.1338307	Jeaf490_23	н	н
-15109.89116	-301.4195653	Jeaf490_28	н	н
-14046.51397	75.99192534	Jeaf490_31	Μ	М
-6568.900176	-175.9008935	eaf325_11	н	н
-32490.81877	595.6814592	Seaf709_1	Μ	М
-8441.71613	1.754756634	eaf325_19	Μ	М
-7857.847789	-209.6624077	eaf325_26	н	н
-21677.41616	223.639316	Seaf709_22	Μ	М
-6630.692657	83.62923777	Jeaf490_22	Μ	М
-23466.78489	-204.1043602	Seaf709_27	н	н
-23858.20899	258.1451311	Jeaf490_13	Μ	Μ
-11320.8584	-33.62762601	eaf325_4	М	H

Noravis User Interface

File Data	Views	Anab	/sis			
📄 Featu	re Table					o c D
FEATURE her	RATIO			prob 0.39 Never minio 7 Cear -		
my	1.98		225	4.95 To own all Susan of / my own		Dear Sue,
Vau	1.98			-0.61 White as an / Indian Pipe		God bless <mark>you</mark> for the Bread
susan	1.98			13.02		Now - can <mark>you</mark> spare it?
me	1.98	=		-0.65 "Thank you" (ebbs - between us		Shall I send it back?
ast	1.82			13.74 Dear Sue. J Your - Riches - J taught me -		Will you have a Loaf of
sister	1.82		230	1.66 "Lest any" / Hen	1 12	
take	1.82		231	0 Sue - to be / lovely as you		mine - which is spread?
woman	1.64		232	0 To be Susan / is Imagination		Was silly eno' to cut six,
sue	1.64			-5.39 Gratitude - is not i the mention / 01 a		and <mark>have</mark> three left.
though	1.64		234	5.39 Sue - this / is the last / flower -		Tell <mark>me</mark> just as it is, and
have	1.42		235	2.48 Susan - (The sweetest) acts		11 send home yours, or a
god	1.42		236	0 Sweet Sue, / There is (no first, or last		
1	1.42			-0.82 We meet / no Stranger / but Ourself.		Loaf of <mark>mine</mark> , spread, you
nearl	1.42		238	-2.97 To lose what we Jinever owned		understand - Great times -
she	1.42		239 1	14.89 Dear Sue, J God bless you for the bread!		Love for Fanny.
it	1.42		240	4.79 But Susan is / a Stranger yet -		Wish Pope to Rome - that's
celleve	1.42		241	8.31 Susan - I would / have come out / of Eden		all -
aone	1.42	- 8	242	3.67 Dear Sue - / The Supper / was delicate / and		ац -
only	1.42		243	7.39 Dear Sue - / I should love dearly	1	
at	1.13		244	7.95 Susan is a / vast and sweet / Sister	VS:C	
асе Гасе	1.13		245	4.35 Dont do such i things, dear Sue -		Emily.
remem	1.13		246	0 Susan's Idolater keeps / a Shrine		User Rating
DWN	1.13		247	3.58 Memoirs of Little / Boys that live -	=	00000
eden	1.13	- 1	248	-1.95 Write Comrade - write /		Net Hot Onrated
back	1.13		249	1.31 Dear Susie - I send / you a little air -		Predicted Rating
doubt	1.13	-	250	0 Only Woman / in the World		Not Hot

Software Architecture

- D2K and T2K
 - Data mining tools and environment from the NCSA (at UIUC)
 - http://alg.ncsa.uiuc.edu
 - A data-mining "engine" plus...
 - Modules
 - Itineraries
 - Web-services component

D2K and Its Many Components

• D2K Infrastructure

D2K API, data flow environment, distributed computing framework and runtime system

D2K Modules

Computational units written in Java that follow the D2K API

• D2K Itineraries

Modules that are connected to form an application

• D2K Toolkit

User interface for specification of itineraries and execution that provides the rapid application development environment

• D2K-Driven Applications

Applications that use D2K modules, but do not need to run in the D2K Toolkit

Part 3: Issues

Literary Docs and TM

- A TM Assumption: large amount of data overcomes "noise", lack of precision
- TM is often about: news, emails
 Lots of short documents
- Literary documents
 - Novels: big but few
 - Process by chapter, page,...
 - Often scholars want to focus on a small subset

Logical Units within Documents

- "Chunking"
- Need frequency counts by chunk
- What's available for each document?
 Processing and user-choice
- Document collection issues
 - Different mark-up between documents
 - Logical equivalence: treat sections in Doc1
 like chapters in the other docs

Document Processing

- Excluding parts of documents
 - Just XML < DIV1> elements with < BODY>
 - Ignore <FIGURE>
- Documents that faithfully reproduce a old publication
 - "Missing" or "duplicate" chapters
 - Spellings
- Varying levels of markup

Final Remarks

- TM results are interesting to literary scholars
- "Doing TM well" for our documents is an on-going exploration

 Need to collaborate with other communities
- Easy-to-use interfaces matter for our users
- Integration with word-lists, KWIC, etc. matter