The LICHEN Framework: A new toolbox for the exploitation of corpora

Lisa Lena Opas-Hänninen, Tapio Seppänen, Ilkka Juuso and Matti Hosio (University of Oulu, Finland)
Background

- Cultural inheritance is increasingly preserved in multiple media: text, images, speech, audio, graphics, animation etc.
- Digitalization of content creation and storage devices produces an increasing amount of digital data for databases (digital convergence)
- Need for database tools for accessing and analyzing the data
Content-based information retrieval

• Basic principle
 – The user has a need for information and an illustrating example (text, image, video shot, sound)
 – The user formulates a query from the properties of the example
 – The retrieval system provides the user with hits that are supposed to be relevant
 – The user checks the hits and refines his query to get better hits

1. "Computer, I want similar sounding shots that are located indoors and have at least one musician in it"
2. "Master, here are the most similar ones:"
3. "I prefer shots like the first one, could you provide me more like those?"
4. "And could you also show me the entire video of this"
The semantic gap

Information need
High-level semantic concepts
objects, scenes, persons, actions, events, feelings

Retrieval engine
Tries to map data-driven low-level features to user-driven concepts.
- feature computation (representation)
- inference, classifiers
- machine learning (modeling, feature fusion)

Data: text, texture, shape, color, layout, motion

Low-level features
(Automatically computed) metadata
The problem of annotation

- (Semi)automatic extraction of useful information from video content for the purpose of retrieval, browsing and indexing
- Required for training and testing search engines
- Why (semi)automatic instead of manual annotation?
 - Sheer volume of data may render manual methods impractical
 - Manual methods are subject to personal interpretations
 - Manual methods are subject to human errors

- Still, manual annotation is very important
 - (Semi)automatic methods may not be robust enough
Document image retrieval

- Paper documents have been scanned and stored in DBs
- Search for documents with specific layout structures
- Search for documents containing specific text or markings
- Books, emails, poems, articles, etc.
Various document types
Document image retrieval

- Image retrieval is based on:
 - subject
 - color
 - texture
 - date

- Document retrieval is conventionally based on:
 - text
 - subject
 - attributes

- In IDIR documents can be queried also by:
 - layout (position and size of objects in documents)
Effect of OCR errors on document retrieval

- **Optical Character Recognition (OCR)**
 - Conversion of document images to text

- **The TREC community experiments**
 - For OCR accuracy of <80%, not useful
 - For OCR accuracy of 80-95%, use enhanced IR
 - Filtering of noise, approximate string matching, fuzzy methods, OCR confusion statistics, n-gram
 - For OCR accuracy of 95-100%, most IR work fine
Arbitrary image retrieval

- digital images of ...
 - cultural content: shamans, Lapps, ceilidh, herd of reindeer, whisky stillpots, santa claus, fishing, sauna, etc.
 - other tourism-related images
 - ads, illustrations, etc.
Image Retrieval System

- Searching with content-based search interfaces, flexible search trees, sketch based retrieval, example-based search, fast indexing, and similarity metrics
Audio and speech retrieval

• interviews, conversations, TV broadcasts, speeches, etc.
• search for instances of words, utterances, expressions,...
 – “wonderful”, “yeah”
• play the sounds while displaying the accompanying textual transcription or images/video
 – do smiles always indicate happiness?
 – does a knotted brow always indicate puzzlement?
• samples of environmental sounds, such as from nature or animals
Audio and speech

Audio

• speech
• music
• other sounds

• speech-driven UI
• simultaneous interpretation
• audio material indexing

• voice-effect libraries
• effect-based video categorization

• music classification
• music storage and search
• voice-sample based queries
Prosodic analysis tools

Figure No. 1: F0Tool

File: Monolog_1_3.wav
Size: 1656301 Bytes
Fs = 11025 Hz
Bits = 16
Mean = 134.7 Hz; Median = 132.4 Hz
Max = 181.1 Hz; Min = 101.6 Hz
Range = 79.5 Hz
Shimmer = 14.4%; Jitter = 1.25%
Proportion of LF = 65.3%

[Waveform and other graphical data]
Video retrieval

- TV broadcasts, political speeches, videoed events, etc.
- Search for specific videos or video shots
- Display hits and their metadata or interpretations
 - gestures, facial expressions (e.g. political speeches)
Video and movies

Video
- auditory information
- static and dynamic visual information
- spoken information

• key frames
• shots
• scenes
• time-dependency

Video analysis
- media asset management
- activity recognition

“Pesäpalloliiton selvitys sopupeleistä...”

Voice analysis
- speech recognition

Image analysis
- text analysis
- fusion techniques
Data abstraction levels

Low-level components
- atomic
- pixel colors (image)
- frames (video)
- spectrum (speech)

Intermediate-level components
- regional
- temporal
- segmented (image)
- shots (video)
- phonemes (speech)
- audio types: speech/music

High-level components
- meaning
- objects (image)
- scenes (video)
- words, clauses (speech)

Raw data sequence
- Automatic
- Semi-automatic
- Semi-automatic or manual

- Semantics
- Objects
Query examples

- Find shots of Condoleezza Rice
- Find shots of Iyad Allawi, the former prime minister of Iraq
- Find shots of Omar Karami, the former prime minister of Lebanon
- Find shots of Hu Jintao, president of the People's Republic of China
- Find shots of Tony Blair
- Find shots of Mahmood Abbas, also known as Abu Mazen, prime minister of the Palestinian Authority
- Find shots of a graphic map of Iraq, location of Baghdad marked - not a weather map
- Find shots of tennis players on the court – both players visible at same time
- Find shots of people shaking hands
- Find shots of a helicopter in flight
- Find shots of George Bush entering or leaving a vehicle, e.g., car, van, airplane, helicopter, etc - he and the vehicle both visible at the same time.
- Find shots of something (e.g., vehicle, aircraft, building, etc) on fire with flames and smoke visible
- Find shots of people with banners or signs
- Find shots of one or more people entering or leaving a building
- Find shots of a meeting with a large table and more than two people
- Find shots of a ship or boat
- Find shots of basketball players on the court
- Find shots of one or more palm trees
- Find shots of an airplane taking off
- Find shots of a road with one or more cars
- Find shots of one or more tanks or other military vehicles
- Find shots of a tall building (with more than 5 floors above the ground)
- Find shots of a goal being made in a soccer match
- Find shots of an office setting, i.e., one or more desks/tables and one or more computers and one or more people
• Architecture supports both stand-alone (local) and client-server (over the network) operation modes
Digital rights management

- License servers
- Cryptography-based protection of data
- Digital watermarking of images, audio, speech, videos