HISTORICAL TEXT MINING:
Teaching a computer to read Shakespeare - the problem of spelling variation

Dawn Archer, University of Central Lancashire
Paul Rayson, Lancaster University
The purpose of our talk today

To introduce an Historical Tagger
... enables users to automatically apply part-of-speech and semantic domain information to ENGLISH historical texts from EmodE onwards

In this talk we will explain:
Some of the problems associated with the automatic annotation of texts
Our Methods for dealing with these problems
i.e. Principles of intervention
Hybrid approach
Machine Learning
Proposed future research
Research potential
Using automated systems of annotation on historical texts is problematic ...

EModE texts pose the following “problems”:

- Archaic -eth and -(e)st verb suffixes, e.g. doth, hath, hast, sayeth, etc., which persist in specialised contexts: religious and poetic usage
- Fused forms, e.g. ’Tis (It is)
- Spellings that are variable even in modern-day usage, e.g. center/centre, skilful/skillful/skilfull, the suffixes -or/-our, -isel-/ize
- Archaic forms like howbeit, betwixt, for which no obvious modern equivalent exists
- Compound words, e.g. it self, now adays, in stead
- Proper names of Latin origin that are sometimes modernised, e.g. Galilaeo (Galileo)

In consequence ... the results generated by existing software are not always robust!
Our response?

...to redesign/further-develop an existing Modern Tagger (= the UCREL Semantic Annotation System)

... USAS automatically annotates present-day texts (spoken and written) ...
The Structure of the Modern Tagger

Incorporates “modern” lexical resources, i.e. a list of single word forms and multi-word units (MWUs)

... which are fed into a PART-OF-SPEECH and SEMANTIC tagger ...

Part-of-speech tags are assigned to every lexical item or multi-word expression (MWE), using probabilistic Markov models of likely part-of-speech sequences (- 97% accuracy)

The output is fed into SEMTAG, which assigns tags on the basis of pattern matching between the text and the two computer dictionaries (- 92% accuracy)
The Structure of the Historical Tagger

Incorporates:
Additional lexicons, separated according to period (16-17 C, 18-19 C, 20-21 C)

... a VARiant Detector (= a spelling detector and normaliser)

... and a component that allows us to use the context to amend variants (e.g. genitive s, then/ than ..)

[Diagram of the structure of the Historical Tagger with labels for VARD, POS TAGGER, SEM TAGGER, HISTORICAL LEXICON[S], HISTORICAL MWE LIST[S], CONTEMPORARY LEXICON, CONTEMPORARY MWE LIST, and TEMPLATE RULES.]
Semantic fields captured by the tagger(s)

Hierarchy of 21 major discourse fields (see below), which expands into 232 semantic field tags:

Table 1: The top level of the USAS system

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F: Food & Farming</td>
<td>G: Government & the Public Domain</td>
<td>H: Architecture, Building Houses & the Home</td>
<td></td>
</tr>
<tr>
<td>K: Entertainment, Sports & Games</td>
<td>L: Life & Living Things</td>
<td>M: Movement, Location, Travel & Transport</td>
<td></td>
</tr>
<tr>
<td>O: Substances, Materials, Objects & Equipment</td>
<td>P: Education</td>
<td>Q: Linguistic Actions, States & Processes</td>
<td></td>
</tr>
<tr>
<td>T: Time</td>
<td>W: The World & Our Environment</td>
<td>X: Psychological Actions, States & Processes</td>
<td></td>
</tr>
<tr>
<td>Z: Names & Grammatical Words</td>
<td></td>
<td></td>
<td>E: Money & Commerce in Industry</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N: Numbers & Measurement</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S: Social Actions, States & Processes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Y: Science & Technology</td>
</tr>
</tbody>
</table>

Presently exploring ways in which we may need to alter/amend the 232 categories for the Historical Semantic Tagger – this work will also draw on Shakespearean Thesaurii (i.e. Spevack 1993, Trussler 1986) for Early Modern period
An important point about the VARD

Although the VARD allows for the detection and “normalisation” of variants to their modern equivalents, it should be noted that ...

- The original variants are retained in the text
- We’re not carrying out spell checking per se (no “correct” spelling in EmodE period) ...
 - Rather, our ultimate aim is to develop a system that does not merely offer the user possible “suggestions” for spelling variants (as in the case of MS-Word and Aspell), but automatically regularises variants within a text to their modernised forms so that historical corpora become more amenable to further annotation and analysis.
VARD uses a hybrid approach to match EmoDE variants to modern equivalents

- Version 1
 - Known variants list

- Version 2
 - Soundex
 - Edit distance
 - Letter replacement heuristics

- Version 3
 - Contextual rules
Known variants list

A search and replace script and a list of terms, which “matches” spelling variants to their “normalised” equivalents:

- Presently contains 45,805 entries
- With several categories: “o”, “m”, “mod”, “d”, “f”, etc.
- Manually constructed (although labour intensive, has proved to be accurate: see Rayson et al., 2005)
Soundex match

... Identifies strings that sound similar regardless of their spelling ...

1. Replace all but the first letter with the digit listed below:
 0: A, E, I, O, U, H, W, Y
 1: B, F, P, V
 2: C, G, J, K, Q, S, X, Z
 3: D, T
 4: L
 5: M, N
 6: R

2. Remove any pairs of digits that are the same and occur next to each other in the string.

3. Remove all occurrences of the digit 0.

4. The Soundex code is the first 4 letters of the remaining string.

'disapont' and 'disappoint' both have code D215
But so do 'dispense', 'deceiving' and 'despond'
Edit distance

- **Levenshtein distance (1965)**
 = Measure of similarity between two strings

- 'disapont' -> 'disappoint' distance = 2:
 - insertion: p
 - insertion: i

- 'disapont' -> 'dispense' distance = 4:
 - deletion: a
 - substitution: o → e
 - substitution: t → s
 - insertion: e

- 'disapont' -> 'deceiving' distance = 7:
 - substitution: i → e
 - substitution: s → c
 - substitution: a → e
 - insertion: i
 - substitution: p → v
 - substitution: o → i
 - substitution: t → g
Letter replacements

• Manually constructed - based on corpus data

• 51 rules, some specifying 'context' for replacement
 - Replace final ck with c
 - Replace u with v
 - Replace v with u
 - Replace final 'd with ed
 - Remove final e
Contextual rules

• A component to cope with inconsistencies (orthographical and other) that can only be disambiguated via the “context”

• Uses context rules, such as ‘if … then’, e.g. ...

 If the input consists of:
 - her tagged as APPGE (possesive pronoun)
 - Majesties tagged as NN2 (plural noun)

 Then: change the word
 - Majesties to ... Majesty's (sing. noun+genitive)

NOTE:- we also intend to make use of semantic info.
Machine learning

- Trained by manual additions to the dictionary

- Weighting of different approaches changes during the use of the system ...
 e.g. when applied to Shetland component of SCOTS corpus, Soundex is preferred over known variants
As the system learns, new spelling variants can be added to our list ...

... and we can keep a check on how many times a particular variant occurs ...

... as well as determine which of our approaches seems most effective for a particular genre/dialect/period.
As previously explained ... the tool uses several procedures to determine the spelling ... and scores the suggested spellings accordingly ... in this instance, “disdainefull” is correctly identified as disdainful (62.5%).

Further into the play, the same word has an alternate spelling: “disdainfull”, which again is correctly identified (95%).
Some preliminary results ...

No. of variants initially found in MND by VARD = 1610.
A quick check of the variants revealed that a handful of these were “real” words that VARD had not recognised (because of not being in our list (=BNC Written Sampler))

 Some real words were LATINATE terms ... our present approach is to ignore these.

 Others were NAMES of CHARACTERS ... we tend to add these to the existing list.

 The majority of “real” words were words still in use today, but which are not found in the BNC Written Sampler ... consequently, we are interested in incorporating a more comprehensive word list ...
First 150 variants

VARD was able to offer appropriate suggestions for 149. The first suggestion tended to be the right one ...

.. with the exception of “vnhardned” ... a possible solution here is to affix-strip.

Types of variant “normalised” (from 150 list):

u - v e.g. aduis’d (1), beleue (5), haue (95), leaue (15)
v - u e.g. vrg’d (1), vs (21), vsuall (1), voyce (5), vp (26)
ie-y e.g. chastitie (1), daies (3)
i - j e.g. iewels (1), inuires (1), iudgment (1)
Extra e e.g. asleepe (5), Bottome (14), confesse (3)
‘d e.g. chang’d (2), adus’d (1), bewitch’d (1)
Double ll e.g. beautifull (1)

Also normalised apricocks to apricots, acquain-tance to acquaintance, etc.
Variation that VARD deals with successfully ...

Apostrophes signalling missing letter(s) or sound(s): ‘fore (“before”), hee’l (“he will”),

Irregular apostrophe usage: again’st (“against”), whil’st (“whilst”)

Contracted forms: ‘tis (“it is”), that’s (“that is”), youl’e (“you will”), t’anticipate (“to anticipate”)

Hyphenated forms: acquain-tance (“acquaintance”)

Variation due to different use of graphs: <v>, <u>, <i>, <y>

Doubling of vowels and consonants – e.g. <-oo-> <-ll>

Phenomena that is proving more problematic:

I to represent aye (= “yes”)

Contraction of “stand-alone” words (e.g. shalbe)

Compounds that are now open (e.g. Townes-men)

Compounds that were then open (e.g. our selues)

Capitalisation (but useful as a “noun” marker?)
Where next with the prototype ...?

- The prototype is not yet making use of the contextual rules we’ve developed to cope with inconsistencies relating to the genitive and “then” versus “than”, etc.

- These contextual rules rely on part-of-speech information

- We aim to incorporate the prototype into the Historical Semantic Tagger, so that we can utilise the contextual component ...

- In addition ...
 - We want to make use of semantic domain information as a means of disambiguating which variant forms belong to which normalised forms in instances where a one-to-one mapping isn’t feasible - e.g. piece/peace and peece

 - We are considering whether the inclusion of etymological information might provide a further means of choosing between possible variants - by, for example, helping us to eliminate some variant-to-head word mappings if they cannot occur in a particular century ...?
We aim to provide a period-sensitive tool

... by ranking variants according to whether they are archaic or specialised.

• This requires that we establish explicit criteria for the automated modernisation of historical spellings.

• We are also developing a post-processing component, so that:

 We can normalise (where possible), using our three techniques ...

 then reintroduce the variant forms ...

 whilst signalling a relationship between the latter and their modernised equivalents, using a \texttt{<rel>} tag.

Our reasoning behind the above approach is that we want to:

• Make use of important contextual information (that would have been lost had we not initially normalised them), and

• Better trace the relationships between variants
The user’s experience ...

The user will utilise the VARD to detect and normalise spelling variants ... at which point, the user will be given the option of part-of-speech tagging and semantically tagging their chosen text(s)

Once the text has been tagged, the user will have access to a split screen interface ...

One window will provide an option to view the text (in its original state or in its amended state)

The remaining window will allow users to perform a number of searches ... at the word, P-O-S and semantic level
The VARD’s research potential …

Matching variant spellings (and other variant forms) to their “normalised” equivalent[s] means more meaningful results for those who want to analyse their datasets using standard corpus linguistic techniques (frequency profiles, concordances, collocations, extraction of n-grams)

• The VARD also allows for the exploration of spelling variation systematically. This might be across different centuries and/or across different text-types

Future possibilities …?

We would like to explore the feasibility of adapting the VARD so that it can “normalise“:
» Historical periods that are pre-Shakespeare
» Dialectal variation in Pres-Day texts
Thank you for your interest!

Contact details:
Dawn Archer (dearcher@uclan.ac.uk)
Paul Rayson (paul@comp.lancs.ac.uk)

Further details re VARD and the Historical Tagger, available at:
http://www.comp.lancs.ac.uk/ucrel/

Acknowledgements:
The development of the VARD has benefited greatly through input from Nick Smith and Alistair Baron (Lancaster University)

Work presented here was carried out within the following projects:
» Unlocking the Word Hoard funded by the Andrew W. Mellon Foundation with Martin Mueller of Northwestern University and
» Scragg Revisited funded by the British Academy (under the small research grant scheme)