

Arabic Dialect Identification

in the Context of Bivalency and Code-Switching

Overview

- Automatically Identify Written Arabic Dialects using Machine Learning.
- Incorporate grammatical and stylistic features.
- Enhancing dialect detection by addressing the issue of language bivalency across Arabic dialects.

Arabic Dialects

- (Modern) Standard Arabic descendant of Classical Arabic
- Standard Arabic vs. Regional dialects
- Diglossic distribution of functions
- Written/Spoken dichotomy
- Code-switching

Arabic Dialects

- Continuum(s) of Regional dialects
- Main dialect groups: Maghrebi, Egyptian, Levantine, Mesopotamian, Gulf

Different Arabic varieties in the Arab world - Wikipedia https://commons.wikimedia.org/wiki/File%3AArabic_Dialects.svg

Arabic Dialects

English	MSA	Egyptian	Jordanian
Coffee 🚽	qahwah	'ahwah	gahweh
Sugar 🛞	sukkar	sukkar	sukkar
Camel ल	jamal	gamal	jamal
Giraffe	zarāfah	zarāfah	zarāfeh
Chicken 🍠	dajāj	firākh	jāj
Man 🛉	rajul	rāgil	zalameh
Нарру 😝	saʿīd	mabsūt	mabsūt
Car 🖚	sayyārah	ʻarabiyyah	sayyārah
Clothes 📸	malābis	hudūm	ʾawāʿī
Mattress	martabah	martabah	farsheh
Grey	ramādī	ramādī	sakanī
Pink	zahrī	bambī	zahrī

What is Bivalency?

- Strategic bivalency
- Written bivalency
- Common in spoken Arabic
- Even more common in written Arabic
- Opaqueness of unvoweled Arabic script
- Hegemony of standard Arabic writing system eg. ألم not قلم

Bivalency in Written Arabic

• Example from Mejdell (2014: 273):

My Book about Mubarak, his era and his Egypt

Standard Arabic reading:

kitābī 'an Mubārak wa-'aṣri-hi wa-miṣri-hi

Egyptian Arabic reading:

kitābi 'an Mubārak wi-'aṣr-u w-maṣr-u

Bivalency vs. Code-switching

- Code-switching: focus on divergent features.
- Bivalence: focus on convergent features.

E.g. 1 (Egy corpus): اول مرة اشوف رئيس دولة يحشد جيوشة من اجل كرة قدم

This is the first time I see a head of state mobilising his army for [a game of] football

E.g. 2 (Glf corpus):

إش المعيار الذي يحكم من خلاله

What is the criterion that is used to judge...

Problem

- Identifying written dialects is a hard task even for Arabic native speakers.
- The task of automatically identifying dialects is harder and classifiers trained using only n-grams will perform poorly when tested on new unseen data.
- It requires significant amounts of annotated training data.
- Currently available dialect datasets do not exceed a few hundred thousand sentences.
- Therefore features other than word n-grams are needed.

Methodology

- Use Machine Learning Classifiers
- Apply a novel approach of detecting bivalent words between dialects.
- We call this: Subtractive Bivalency Profiling (SBP).
- In addition to SBP we also incorporate grammatical and stylistic features.

Subtractive Bivalency Profiling (SBP)

- SBP to study closeness and homogeneity between classes.
- Analysing the dataset we found dialect speakers tend to use MSA when writing in their own dialect.
- This is more common in formal conversations (e.g. Political debates)
- We used bivalency and written code-switching to create dialectspecific frequency lists of two types:
 - A) Dialect Bivalency list.
 - Identifying bivalent words between dialects aside from MSA leaving us with more fine grained dialectical lists.
 - B) MSA written code-switching list.
 - Finding bivalent words between dialects and MSA (MSA written code switching)

- Four Arabic Dialects: Egyptian (EGY), Levant (LAV), Gulf (GLF), and North (NOR) in addition to Modern Standard Arabic (MSA).
- NOR: http://www.tunisiya.org/
- Filtering Arabic Commentary Dataset (AOC) (Zaidan and Callison-Burch, 2014)*.
- AOC used crowdsourcing (Mechanical Turk).

* Zaidan, O. F. and Callison-Burch, C. (2014). Arabic dialect identification. Comput. Linguist., 40(1):171–202.

Machine Learning

- We trained different text classifiers using four algorithms: Naïve Bayes, Support Vector Machine (SVM), k–Nearest Neighbor (KNN) and Decision Trees (J48).
- We divided the data into training and testing

<u> </u>		
Dialect Label	Sentences	Words
GLF	2,546	65,752
LAV	2,463	67,976
MSA	3,731	49,985
NOR	3,693	53,204
EGY	4,061	118,152
Total	16,494	355,069

Fraining	Data	(~70%)
----------	------	--------

Testing Data (~30%)

Dialect Label	Sentences	Words
GLF	1,741	40,768
LAV	1,092	17,070
MSA	1,056	18,215
NOR	1,600	29,759
EGY	1,584	33,066
Total	7,073	138,878

Baselines

• Baseline_1:

A classifier that always selects the most frequent class (EGY in this case).

Accuracy: 24%

• Baseline_2:

A word-level n-gram features classifier; selecting unigram, bigram and trigram contiguous words using Naïve Bayes classifier.

Accuracy: 52%

Feature Extraction_1

- Grammatical Features
 - POST (Stanford)
 - Tag Frequency: refers to the frequency of each tag found in the POS tagset
 - Uniqueness: refers to the number of tag types introduced in the text.
 - Function words
 - adverbs, adverbials, conjunctions, demonstratives, modals, negations, particles, prepositional, prepositions, pronouns, quantities, question and relatives function words.

Feature Extraction_2

- Stylistic Features
 - Type-Token-Ratio (TTR)
 - The ratio obtained by dividing the total number of different words (types) occurring in a text by the total number of words (tokens).
 - Readability (OSMAN) (<u>http://drelhaj.github.io/OsmanReadability/</u>)
 - Provides readability score between 0 (hard to read) and 100 (easy to read). In addition to syllables, hard words, complex words and Faseeh.

Feature Extraction_3

- Subtractive Bivalency Profiling (SBP)
 - Create two Frequency lists:
 - Dialect bivalency
 - MSA Written code-switching.

Feature Reduction

- Using Information Gain Ration and Feature-Group Filtering
- Reduce large number of features
- Increaser performance and classification speed.

- Baseline_1: 24% (most frequent Label: EGY)
- Baseline_2: 52% (Short sentences, High Bivalency (e.g. (مياضة, نعم، تعليم)

Results / Training 🚧

- 10-fold cross validation
- Reduced features.
- J48, SVM, Naïve Bayes and KNN
- Best machine learning algorithm c97% (J48)

Algorithm	Accuracy
J48	97.11%
SVM	91.3%
KNN	73.69%
NB	60.89%

Results / Training 🖗

- Examining Feature Groups
- Help in better split the dataset, easier for Machine to learn and classify.
- Results show SBP outperformed all other features.
- Combining SBP with Gram and Sty helps increase accuracy.

Feature(s)	J48	SVM	NB	KNN
Sty + SBP	97.11	89.74	74.46	92.98
SBP + Gram	97.08	90.50	61.04	77.75
SBP	97.07	89.10	75.06	96.39
Sty + Gram	51.20	54.35	41.48	46.78
Gram	50.56	52.56	40.47	46.39
Sty	44.87	29.12	32.78	42.62

Results / Testing

- Separate unseen dataset
- Classifiers testing results outperformed the two baselines.
- Using n-gram on new unseen data didn't work well as expected.
- SBP combined with Sty and Gram features helps the classifier identify dialects even when there are new vocabulary that the classifier has not seen before.

مع میں
ی س د کردانه ا غ د. ٤. ظ طرحی ش
ع ل ک ق ک ع رف می اور فن رف

Feature(s)	J48	SVM	NB	KNN
Sty + SBP	64.31	59.64	50.82	63.51
SBP + Gram	64.28	59.52	50.78	63.40
SBP	63.84	58.56	51.09	66.32
All	63.64	62.99	43.29	54.57
Sty + Gram	51.31	53.24	39.92	43.48
Gram	50.38	52.49	38.92	42.17
n-gram	42.78	31.02	32.36	38.86
Sty	41.16	33.09	27.15	31.45

- Built machine learning classifiers to automatically detect Arabic dialects.
- New method SBP helps classifiers split dataset of different and close Arabic dialects.
- SBP outperformed all other individual features.
- Results improve when combining SBP with other Gram and Sty features.
- Code available online:
- https://github.com/drelhaj/ArabicDialects

