

Evaluation metrics matter: predicting sentiment from financial news headlines.

Andrew Moore and Paul Rayson April 12, 2017

School of Computing and Communications, Lancaster University.

- 1. Introduction
- 2. Approach
- 3. Findings and Results
- 4. Why evaluation metrics matter

Introduction

What is SemEval

Semantic comparison for words and texts

- Task 1: Semantic Textual Similarity
- Task 2: Multilingual and Cross-lingual Semantic Word Similarity
- Task 3: Community Question Answering

Detecting sentiment, humor, and truth

- Task 4: Sentiment Analysis in Twitter
- Task 5: Fine-Grained Sentiment Analysis on Financial Microblogs and News
- Task 6: #HashtagWars: Learning a Sense of Humor
- Task 7: Detection and Interpretation of English Puns
- Task 8: RumourEval: Determining rumour veracity and support for rumours

Parsing semantic structures

- Task 9: Abstract Meaning Representation Parsing and Generation
- Task 10: Extracting Keyphrases and Relations from Scientific Publications
- Task 11: End-User Development using Natural Language
- Task 12: Clinical TempEval

- » Steven Bethard, University of Arizona
- * Marine Carpuat, University of Maryland
- Marianna Apidianaki, LIMSI, CNRS, University Paris-Saclay
- Saif M. Mohammad, National Research Council Canada
- ▶ Daniel Cer, Google
- » David Jurgens, Stanford University

Email

semeval-organizers@googlegroups.com Note that this is the mailing list for SemEval organizers. For questions on a particular task, post them at the "task" mailing list. You can find the task mailing list from the task webpage.

🖄 Other Info

Announcements

B Jul 2016 - Participants can now register for tasks on the <u>SemEval-2017 registration</u> form.

Copyright 2017 - SemEval-2017. All Right Reserved

The task

Example sentence

'Why AstraZeneca plc & Dixons Carphone PLC Are Red-Hot Growth Stars!'

Sentiment scale

Data

Training data: 1142 samples, 960 headlines/sentences. Testing data: 491 samples, 461 headlines/sentences. Cosine Similarity (CS)¹

$$\frac{\sum_{i=1}^{K} A_i B_i}{\sqrt{\sum_{i=1}^{K} A_i^2} \sqrt{\sum_{i=1}^{K} B_i^2}}$$

Example

A = Predicted sentiment = [0.5, -0.2] B = True sentiment = [0.4, 0.1] Cosine similarity = 0.189 (1)

¹Taken from Wikipedia https://en.wikipedia.org/wiki/Cosine_similarity

Approach

Word2Vec model

Used 189, 206 financial articles (e.g. Financial Times) that were manually downloaded from Factiva² to create a Word2Vec model [5]³.

These were created using Gensim⁴.

²https://global.factiva.com/factivalogin/login.asp?productname=global

³https://github.com/apmoore1/semeval/tree/master/models/word2vec_models

⁴https://radimrehurek.com/gensim/models/word2vec.html

Features and settings that we changed

- 1. Tokenisation Whitespace or Unitok⁵
- 2. N-grams uni-grams, bi-grams and both.
- 3. SVR settings penalty parameter C and epsilon parameter.
- 4. Target aspect.
- 5. Word Replacements.

⁵http://corpus.tools/wiki/Unitok

Example Sentence

'AstraZeneca PLC had an improved performance where as Dixons performed poorly'

'companyname had an posword performance where as companyname performed negword'

Company example N=10 company = 'tesco'

sainsbury 0.6729 asda 0.5999 morrisons 0.5188 supermarkets 0.5089 kingfisher 0.4956 primark 0.4811 grocer 0.4792 unilever 0.4764 wal-mart 0.4750 waitrose 0.4713

Bi-directional Long Short-Term Memory BLSTM [3][4]

- 1. Sentences are fixed length.
- 2. All words are represented as vectors.

Example

why astrazeneca plc & dixons carphone plc are red - hot growth stars !

BLSTM LSTM network⁶

LSTM network

h_{t1} h_t h_t h_{t+1} LSTM LSTM LSTM X_{t1} X_t X_t X_{t+1}

Properties

- 1. Forgot gate.
- 2. Input gate.
- 3. Output gate.

⁶Image idea taken from: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

The advantages of LSTMs

- 1. Good at learning sequential data.
- 2. Able to learn long term dependencies.

LSTM related work

- 1. Google have improved their translation system using LSTMs[7]
- 2. Chiu and Nichols improved Named Entity Recognition[1].

BLSTM architecture explained

Loss function Mean Square Error (MSE)

$$\frac{1}{Y} \sum_{i=1}^{Y} (\hat{y}_i - y)^2 \qquad (2)$$

Two BLSTM models

Standard Model (SLSTM)

- Drop out between layers and connections.
- 25 times trained over the data (epoch of 25).

Early stopping model (ELSTM)

- Drop out between layers only.
- Early stopping used to determine the epoch.

Findings and Results

Features

- Using uni-grams and bi-grams to be the best.
- Using a tokeniser always better. Affects bi-gram results the most.
- SVR parameter settings important 8% difference between using C=0.1 and C=0.01.
- Incorporating the target aspect increased performance.
- Using all word replacements. N=10 for pos and neg words and N=0 for company.

SVR 60.21%

SLSTM 73.20%

ELSTM 73.27%

- Incorporate aspects into the BLSTM's shown to be useful by Wang et al. [6].
- 2. Improve BLSTM's by using an attention model Wang et al. [6].

dixons profits have increased while amazons debt has decreased

- 1. Incorporate aspects into the BLSTM's shown to be useful by Wang et al. [6].
- 2. Improve BLSTM's by using an attention model Wang et al. [6].

Why evaluation metrics matter

'given a text instance predict the sentiment score for each of the companies/stocks mentioned'⁷

⁷http://alt.qcri.org/semeval2017/task5/

Cosine Similarity (CS) Metric 2 Metric 1

$$\frac{\sum_{n=1}^{N} CS(\hat{y}_n, y_n)}{N}$$
(4)

$$\frac{\sum_{i=1}^{K} A_{i}B_{i}}{\sqrt{\sum_{i=1}^{K} A_{i}^{2}} \sqrt{\sum_{i=1}^{K} B_{i}^{2}}} \quad (3) \text{ Metric 3} \\ \frac{\sum_{n=1}^{N} \begin{cases} len(\hat{y}_{n}) * CS(\hat{y}_{n}, y_{n}), & \text{if } len(\hat{y}_{n}) > 1\\ 1 - |y - \hat{y}_{n}|, & \text{if } \frac{\hat{y}_{n}}{y} \ge 0 \end{cases}}{K}$$
(5)

K = Total number of samples.N = Total number of sentences.

			Metric		
PS	TS	1	2	3	No. Sentences
[[0.2],[0.5]]	[[-0.4],[-0.1]]	-0.585	-1	0	2
[[0.9],[0.2]]	[[0.8],[0.3]]	0.99	1	0.9	2
[[0.2, 0.3]]	[[-0.1, -0.2]]	-0.992	-0.496	-0.992	1

PS = Predicted Sentiment TS = True Sentiment

All of the above are two samples.

⁸Code for this slide https://github.com/apmoore1/semeval/blob/master/examples/metric_examples.py

	Metric				
Model	1	2	3		
SVR	62.14	54.59	62.34		
SLSTM	72.89	61.55	68.64		
ELSTM	73.20	61.98	69.24		

⁹code this slide https://github.com/apmoore1/semeval/blob/master/examples/run.py

Problem

To identify 'bullish (optimistic; believing that the stock price will increase) and bearish (pessimistic; believing that the stock price will decline) sentiment associated with companies and stocks.'¹⁰

Main reason against metric 1

That scores with opposite sentiment should not be rewarded in any way.

¹⁰http://alt.qcri.org/semeval2017/task5/

- 1. https://colah.github.io/posts/ 2014-07-NLP-RNNs-Representations/
- 2. http://sebastianruder.com/word-embeddings-1/

- 1. https://deeplearning4j.org/lstm Good place to start.
- https://colah.github.io/posts/
 2015-08-Understanding-LSTMs/ Good place to understand LSTM.
- 3. https://karpathy.github.io/2015/05/21/
 rnn-effectiveness/ on the applications of RNN's.
- 4. https://skillsmatter.com/skillscasts/ 6611-visualizing-and-understanding-recurrent-network video on RNN's.¹¹
- https://nbviewer.ipython.org/gist/yoavg/ d76121dfde2618422139 usefulness of RNN's.

¹¹14.44 mins tips on how to train RNN/LSTM architectures.

1. Recommended book -

http://www.deeplearningbook.org/

- 2. Oxford Deep learning course https: //github.com/oxford-cs-deepnlp-2017/lectures
- 3. Stanford courses
 - 3.1 Machine Learning CS229
 - 3.2 NLP with deep learning CS224n
 - 3.3 CNN for visual recognition CS231n

- 1. Scikit-learn for the SVR http://scikit-learn.org/stable/
- 2. Keras for the BLSTMs https://keras.io/

- 1. BLSTM outperform SVRs with minimal feature engineering.
- 2. Define your evaluation metric with regards to your real world problem.
- 3. Ensure that you know your evaluation metric before creating your system.

Questions?

a.moore@lancaster.ac.uk

@apmoore94

All the code can be found here¹²

Presentation can be found here ¹³

¹²https://github.com/apmoore1/semeval

¹³https://github.com/apmoore1/semeval/blob/master/presentation/slides.pdf

References I

J. Chiu and E. Nichols. **Named entity recognition with bidirectional lstm-cnns.** *Transactions of the Association of Computational Linguistics*, 4:357–370, 2016.

H. Drucker, C. J. Burges, L. Kaufman, A. Smola, V. Vapnik, et al. **Support vector regression machines.** Advances in neural information processing systems, 9:155–161,

1997.

A. Graves and J. Schmidhuber.

Framewise phoneme classification with bidirectional lstm and other neural network architectures.

Neural Networks, 18(5):602–610, 2005.

References II

- S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780, 1997.
- T. Mikolov, K. Chen, G. Corrado, and J. Dean. **Efficient estimation of word representations in vector space.** *arXiv preprint arXiv:1301.3781*, 2013.
- Y. Wang, M. Huang, x. zhu, and L. Zhao.
 Attention-based lstm for aspect-level sentiment classification. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 606–615. Association for Computational Linguistics, 2016.

Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao, Q. Gao, K. Macherey, et al. **Google's neural machine translation system: Bridging the gap between human and machine translation.** *arXiv preprint arXiv:1609.08144*, 2016.