

Harnessing Social Media Streams for Local Information Needs

Dyaa Albakour

University of Glasgow

UCREL CRS, Lancaster University, 12 March 2015



Social media

As of December 2012 1:

- #users on Facebook 1.2 billion
- #tweets per day 190 million
- #pictures to Flickr 3,000/min

- #people accessing the Web from mobiles 818.4 million
- 26% of mobile app usage is social networking 2

The "2013 Q1 report" of the Global Web Index:3

 A rise in active engagement across all social platforms with Twitter the fastest growing (access from mobile phones)

¹ http://www.statisticbrain.com/social-networking-statistics/ 2 http://www.pswebsitedesign.com/social-media-and-mobile-phones/

Local Information Needs and Social Media

- Local Search is attracting more demand
 - Local Search constitutes 43% of Google Queries¹
 - What is happening near me now?

"near me", "in Lancaster", "on campus"

- Activities I can do now or later today
- People are using social media to reflect on real-world events in real-time [1]
 - Communicating to their social circle (what is happening? what are they doing? where are they? ..)
 - Sporting events, earthquakes, protests, riots...

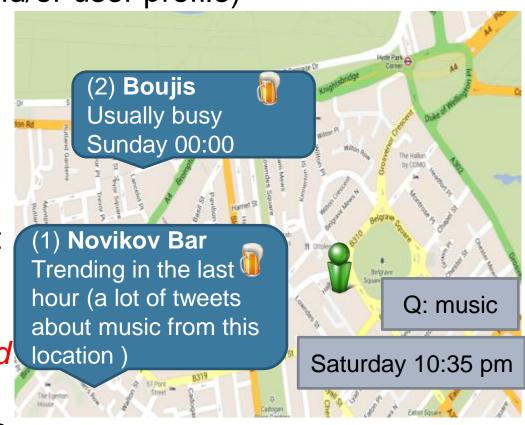
Interaction Scenarios

Input

- Keyword queries or zero-queries;
- Context (time, location and/or user profile)

Output

- Retrieve and rank events that has currently started from social media posts
- Filter social media content about the event
- Anticipate and recommend locations that may have interesting activities for the user



In this talk

Local Event Retrieval using Twitter as a Social Sensor

Twitter Real-time Filtering

Anticipation and Personalised Venue Recommendation using Location-bases Social Networks (LBSNs)

Using Twitter as a Social Sensor

LOCAL EVENT RETRIEVAL FROM SOCIAL MEDIA

Local Event Retrieval from Social media

What is going on in my city?

Query: Entertainment, music, football

When? Where?

Local Events

Local Event Retrieval

Topics

Change

facebook

Reflect on events

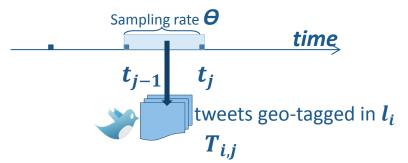
Contributions

- The new task of Local Event Retrieval from Twitter (Twitter as a social sensor)
- A framework for Local Event Retrieval
- Evaluation with a newly created dataset using crowdsourcing and local news feeds

M-D. Albakour, C. Macdonald and I. Ounis. Identifying Local Events by Using Microblogs as Social Sensors. In proceedings of OAIR 2013.

Local Event Retrieval using Twitter

- Given a user query (q):
 - Retrieve a ranked list of local events that are relevant to the user query (q)
- We model a location as a time series



- What people tweet reflect what is happening in a location at a certain time
- A local event has (1) a starting time and; (2) a location

Ranking function $R(q, \langle l_i, t_i \rangle)$:

Rank tuples $< l_i, t_j >$ according to how likely t_j represents a starting time of a matching event that occurred in l_i using the tweets

9

Example of responses for query (concert)

Rank	Start Time	Location	Description (Tweets)
1	Today 19:15	Wembley	More relevant tweets of Wembley Arena on their feet Increased activity of tweeting in those locations
2	Yesterday 20:00	London O2	during those times (than previously observed) http://t.co/RVAVKrvv
3			

A Framework for Local Event Retrieval

Two Components:

- Topically related tweets to $m{q}$ in location $m{l_i}$ at around $m{t_i}$
- Increasing tweeting activity

$$R(q, \langle l_i, t_j \rangle) \sim (1 - \lambda) S(q, T_{i,j}) + \lambda E(q, \langle l_i, t_j \rangle)$$

The voting model to aggregate ranking of individual tweets

ts Quantifies the change in the ne tweeting activity at time t_j in location l_i

(2) The change component

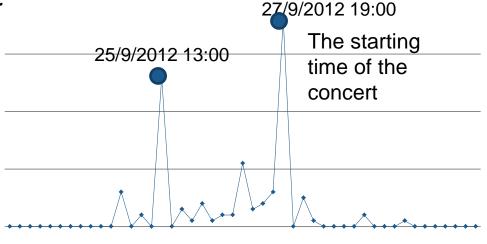
The Change Component

How do we estimate the change in the tweeting activity?

Change point Analysis

#Tweets about "beach boys" in London

 Quantify how likely is the tweeting activity (about a topic) is an outlier with respect to previous observations.



 Apply the Grubb Test [2] Normalised score (0..1)

The tweeting activity: is measured by the topical component score $S(q, T_{ii})$

Experiments

Research Question:

 What is the *impact* of the different components, in our framework, on the ranking effectiveness?

Datasets

			Loom	
Code	Tweets	Events		Queries
Entire London	1.28m geo within Lone12 days (2 → 3/10/12	 Popular events 		uery
		 Young believers of concert 	SHOIF	
4 boroughs	864k geotowithin 4 choroughs London 12 days (→ 3/10/1	Finer-grained Single event for e	ents ·	The title of the
		 Hospital voluntee honoured 	ers	

Experimental Setup

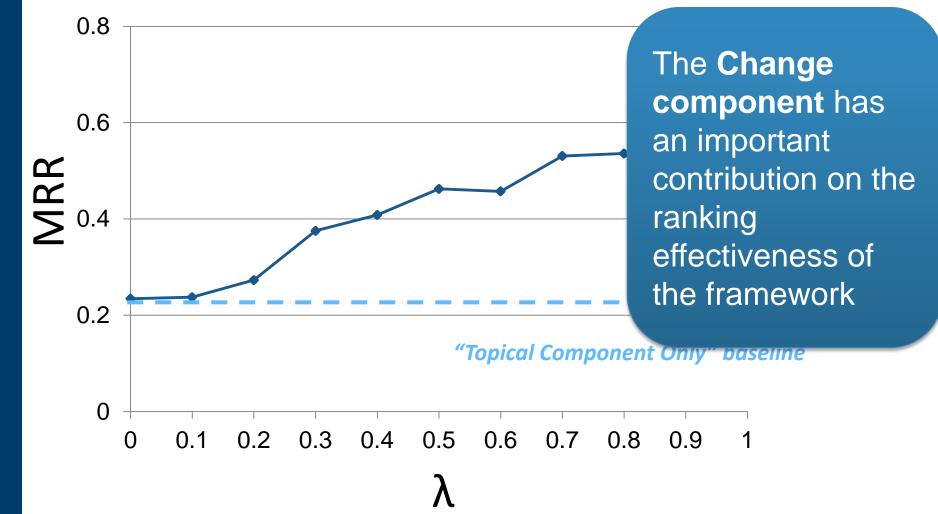
A sampling rate of 15 minutes

DFReeKLIM for ranking tweets in the voting model

• **Baseline**: using the topical component only $(\lambda=0)$

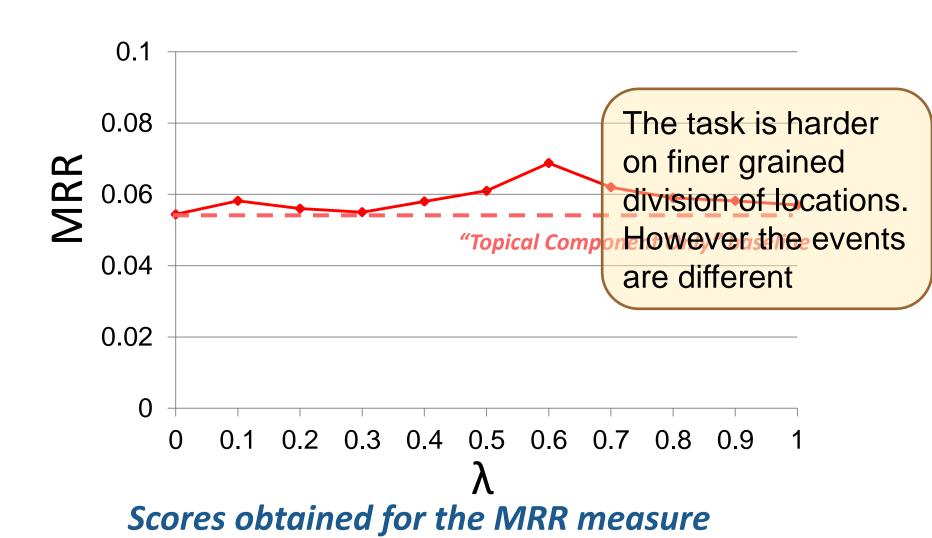
 Evaluation methodology inspired by the video segmentation evaluation for assessing the accuracy of correctly identifying the starting time of an event

Results (Entire London)



Scores obtained for the MRR measure

Results (4 boroughs)



REAL-TIME TWITTER FILTERING

Real-Time Tweet Filtering Terrier

- **Producers:** Huge activity around the globe (on average around 5700 published tweets per second)₁
- **Consumers:** want to stay up-to-date with **relevant** content (not everything!)

Challenges

Tweets are very short documents

→ vocabulary mismatch

US Unemployment

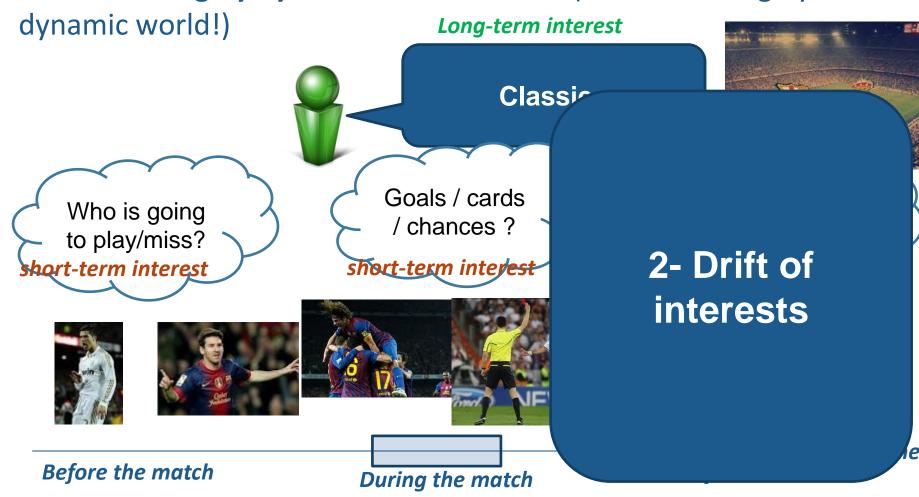
Google News #RonPaul Chairman Ron Paul to Tackle the Fed and Jobs - The New American http://goo.gl/fb/CLjEp

Thu Feb 03 2011 16:26:30

1- Sparsity (Brevity)

Challenges

Twitter is a highly dynamic social medium (it reflects a highly



The interests swing between different aspects (subtopics) of the more general topic (due to **events** in the real world)

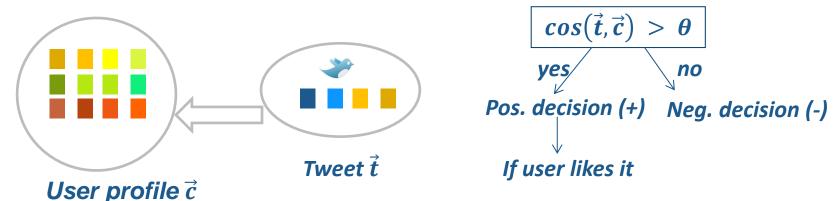
Contributions

- Build on news filtering approaches to tackle the problem of adaptive tweet filtering
- Address the unique challenges in filtering tweets:
 - Address Sparsity by deriving a richer representation of the user profile
 - Address Drift by balancing between short-term and long-term interests

M.-Dyaa Albakour, Craig Macdonald, Iadh Ounis: On sparsity and drift for effective real-time filtering in microblogs. CIKM 2013: 419-428

Tweet Filtering with Incremental Rocchio

- We build on a common technique for News Filtering: the popular Incremental Rocchio's classifier (RC) [3]
 - Build a profile online (vector of terms)



- We considered another state-of-the-art news filtering approach of Regularised Logistic Regression (LR) [4]
 - Evaluation suggests that Incremental Rocchio (RC) significantly outperforms LR (full details in the paper).

Handling Sparsity

Derive relevant and timely terms for a richer representation of the centroid using query expansion (QE) User profile \vec{c}

Query

BBC World Service staff cuts

Budget

Report

Media

Social

Grow

Half

BBC to cut online budget by 25%, cutting 200 websites, and 360 jobs over the next 2 years http://t.co/uD4BDRF

Terms derived with a query expansion (QE) technique

Index of tweets prior to current tweet

Top retries

reets

inks online unit to cut costs Top (Reuters) -Britain's state-backed public broadcaster (2) Irish Times: BBC World Service confirms cuts: The BBC World Service will shed around 650 jobs, or more than a qu...

(3) ...

Experiments: Sparsity

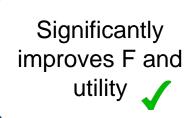
- TREC 2012 Microblog Track Real-time Filtering task
 - Tweets2011 (around 10m tweets over 16 days)
- We have built a real-time filtering infrastructure
 - using Storm and Terrier

Experimental Setup

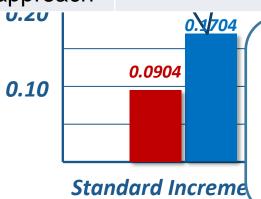
- Standard stopword removal and Porter stemming
- Dirichlet language modelling to weight terms in the vectors
- Threshold tuned on the 10 TREC training topics (38 testing topics)
- Bo1 DFR for query expansion (as provided by Terrier)

Research Question: Are our adaptations for tackling sparsity, using QE, successful in **improving** filtering **effectiveness?**

Results: Sparsity



11 411 11	C'noroity I I			
	Set_Prec	Set_Recl	F_0.5	T11SU
RC + Qe + Te	0.4206	0.3370	0.3435	0.3615
TREC 2012 Best approach	0.6219	0.1740	0.3338	0.4117



Our approach is *more balanced* as opposed to the *conservative* best TREC 2012 approach!

TREC 2012
Best Approach
--- F_0.5

T11SU

Rocchio RC

adaca to centrola

RC+Qe

centroid RC+Qe+Te

What is Drift?

Illustrative Example

Jan 24

BBC to cut **online budget** by 25%, cutting 200 websites, and 360 jobs over the next 2 years http://t.co/uD4BDRF

Jan 26

BBC World Service axes five language services (AFP) - AFP - The BBC World Service has said it will close five o... http://ow.ly/1b23Gf

BBC to axe **650 jobs** at World Service after Foreign Office cuts £50million funding: Today's announcement of the c...

http://bit.ly/hrC109

Topic: BBC World Service Cuts

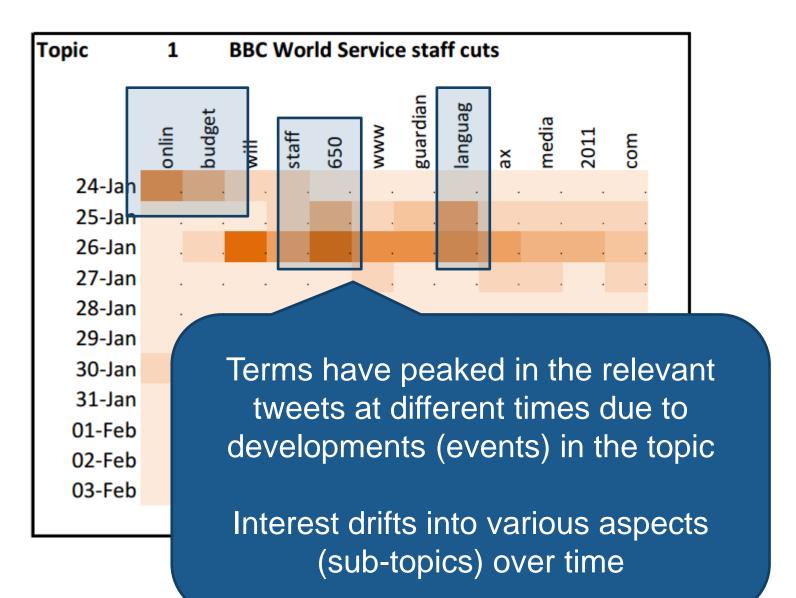
The day when BBC announces that it will **cut its online budget**

On that day, two stories:

2) Slashing 650 jobs

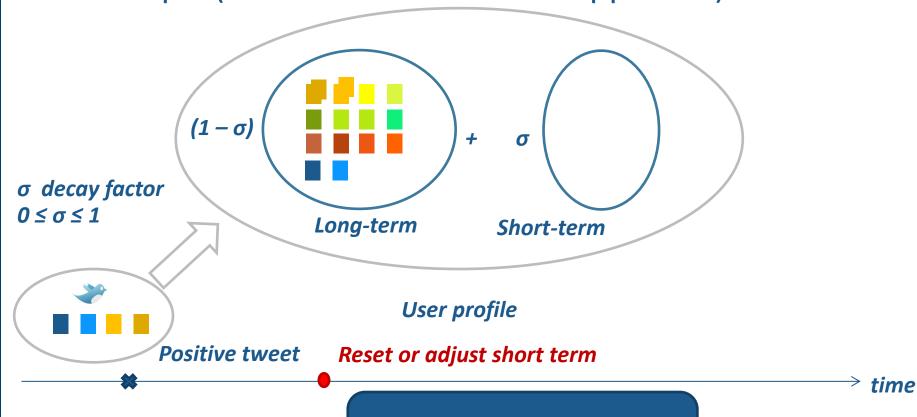
Time

Empirical Viewpoint of Drift



Handling Drift

• Dynamically changing the centroid over time to represent both **short-term** interests and **long-term** interests in the overall topic (combined with the QE approach)



When do we reset/adjust short-term interests?

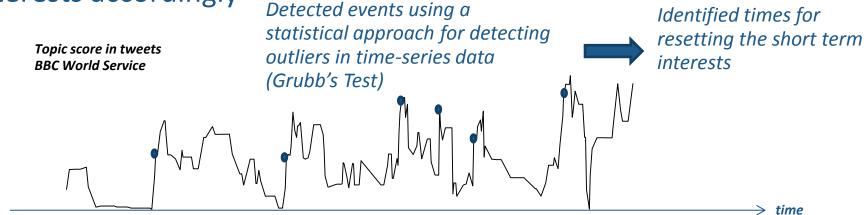
When does drift occur?

When do we reset/adjust short-term interests?

- 1. Arbitrary adjustments: The most recent n positive tweets
- 2. Daily adjustments: The tweets in the current calendar day

3. Event detection [5] to automatically identify times when events related to the topic occurred and reset the short-term

interests accordingly



Event detection can be applied on the Twitter stream itself or external news streams

[5] M. Albakour, C. Macdonald, I. Ounis. Identifying Local Events by Using Microblogs as Social Sensors. In Proc. of OAIR, 2013

Experiments: Drift

Identical setup to the one used before

The QE approach for handling sparsity as a baseline

The newswire stream

 BBC, CNN, Google News, New York Times, Guardian, Reuters, The Register and Wired

Research Questions:

- (1) Adhoc methods vs. event detection for handling drift?
- (3) **sensitivity** of the filtering performance to the **decay factor** σ ?

Results: Spars

- Adhoc methods failed
- ✓ The recall is slightly improved.

Bas RC-

√ The increase in recall is significant.

Arbi (n=1)

✓ Event detection is helping!

Dail $(\sigma =$

 Differences are marginal when using a different stream for events! (Events overlap in both streams)

Evel Twee

$$(\sigma = 0.4)$$

Event detection using **News Streams**

$$(\sigma = 0.4)$$

0.37240.3598

0.3198

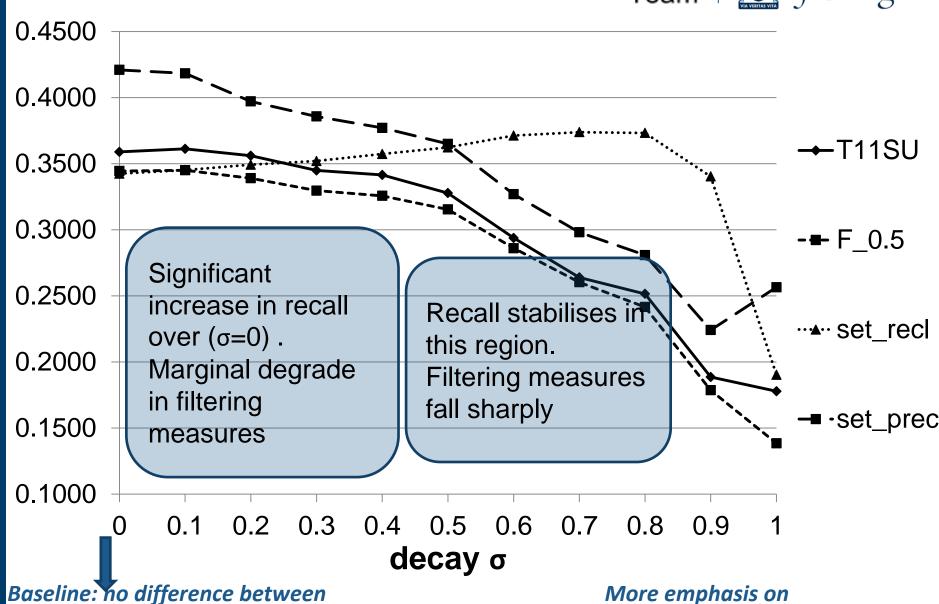
0.3351

A single triangle means the differences are not statistically significant using a paired ttest at p<0.05. Double triangles mean the differences are statistically significant

Sensitivity to decay

short-term and long-term

short-term interests



Conclusions

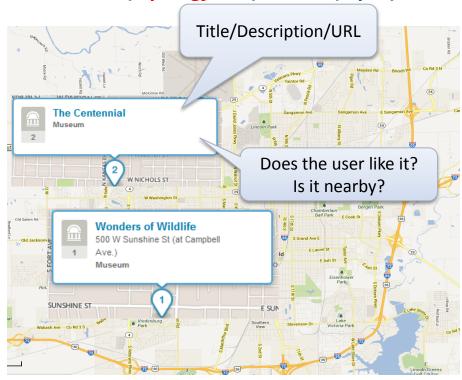
Tackled sparsity and drift for real-time twitter filtering

State-of-the-art for real-time twitter filtering

 With an event detection approach to tackle drift, we can significantly improve the filtering recall while only marginally harming the filtering utility

ANTICIPATION AND PERSONALISED VENUE RECOMMENDATION

Venue Recommendation



Venue recommendation has different potential use cases:

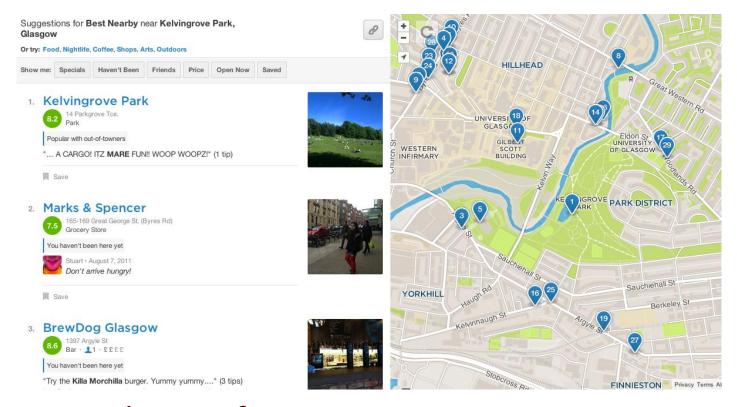
- Tourists use case: "I have one day in this city, what should I see?"
- Residents use case: discover/explore new venues, avoid noisy or polluted places, ...

Existing Services

What do people currently use?

–A tourist guide, The List, Yelp, FourSquare?

No anticipation of venue popularity...



Recommendations from Foursquare at 10pm, in March

Challenges

Venue recommendation: help users decide where to go

"I'm new to the city. What should I visit?"

We argue that effective venue suggestions should encompass:

- Cold-start: we don't know where you have been before
- Personalised: recommend venues that I would like
- Time-aware: Quality venues will be popular

We developed and evaluated a probabilistic model for time-aware and personalised venue recommendation

Ranking Venues

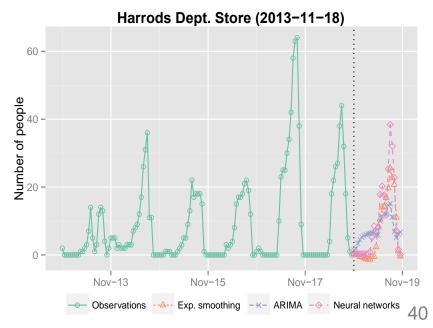
Venue Popularity

How busy a venue will be later in the near future (in the next few hours)

• we anticipate how popular the venue will be

Popularity – we forecast the attendance of venues based on past Foursquare checkins

- Anticipating the future attendance
- Foursquare API as a social sensor of the level of venue attendance ("check-ins")
- time series forecasting models



Personalisation

Personalisation

Evaluation – venue popularity

User Study

User Study

User Study

Results of the User Study

Thanks!

Acknowledgments

This work has been carried out in the scope of the EC co-funded project SMART (FP7-287583).

Co-authors:

Romain Deveaud, Craig Macdonald, Iadh Ounis

dyaa.albakour@glasgow.ac.uk