

Social Web Sentiment Analysis

Mike Thelwall Statistical Cybermetrics Research Group University of Wolverhampton, UK

1. Sentiment Strength Detection in the Social Web with SentiStrength

- Detect positive and negative sentiment strength in short informal text
 - Develop workarounds for lack of standard grammar and spelling
 - Harness emotion expression forms unique to MySpace or CMC (e.g., :-) or haaappppyyy!!!)
 - Classify simultaneously as positive 1-5 AND negative 1-5 sentiment

Thelwall, M., Buckley, K., & Paltoglou, G. (2012). <u>Sentiment strength detection for the social Web</u>. *Journal of the American Society for Information Science and Technology*, 63(1), 163-173

SentiStrength Algorithm - Core

- List of 2,489 positive and negative sentiment term stems and strengths (1 to 5), e.g.
 - ache = -2, dislike = -3, hate=-4, excruciating -5
 - encourage = 2, coolest = 3, lover = 4
- Sentiment strength is highest in sentence; or highest sentence if multiple sentences

positive, negative

1, -2

You are the coolest.

3, -1

◆I hate Paul but encourage him.
2, -4

Extra sentiment methods

- spelling correction
 nicce -> nice
- booster words alter strength very happy
- negating words flip emotions not nice
- repeated letters boost sentiment/+ve niiiice
- ◆ emoticon list
 :) =+2
- exclamation marks count as +2 unless -ve hi!
- repeated punctuation boosts sentiment good!!!
- negative emotion ignored in questions u h8 me?
- **♦ Sentiment idiom list** shock horror = -2

Tests against human coders

Data set	Positive scores - correlation with humans	Negative scores - correlation with humans
YouTube	0.589	0.521
MySpace	0.647	0.599
Twitter	0.541	0.499
Sports forum	0.567	0.541
Digg.com news	0.352	0.552
BBC forums	0.296	0.591
All 6 data sets	0.556	0.565

SentiStrength
agrees with
humans
as much as they
agree with each
other

1 is perfect agreement, 0 is random agreement

Why the bad results for BBC? (and Digg)

- Irony, sarcasm and expressive language e.g.,
 - David Cameron must be very happy that I have lost my job.
 - It is really interesting that David Cameron and most of his ministers are millionaires.
 - Your argument is a joke.

2. Twitter – sentiment in major media events

- Analysis of a corpus of 1 month of English Twitter posts (35 Million, from 2.7M accounts)
- Automatic detection of spikes (events)
- Assessment of whether sentiment changes during major media events

Automatically-identified Twitter spikes

9 Feb 2010

Sentiment and spikes

- Statistical analysis of top 30 events:
 - Strong evidence that higher volume hours have stronger negative sentiment than lower volume hours
 - No evidence that higher volume hours have different positive sentiment strength than lower volume hours
- => Spikes are typified by *small* increases in *negativity*

3. YouTube Video comments

- ◆ 1000 comm. per video via Webometric Analyst (or the YouTube API)
- Good source of social web text data
- Analysis of all comments on a pseudorandom sample of 35,347 videos with <
 1000 comments

THAT'S RIGHT.

BB UR AMAZING :D

Museum Dinosaur Interacts With Kids

j0eg0d 116 videos ≥ Subscribe

Uploaded by j0eg0d on Jul 22, 2008

Sentiment in YouTube comments

YouTube comments tend to be weakly positive

Trends in YouTube comment sentiment

- +ve and -ve sentiment strengths negatively correlate for videos (Spearman's rho -0.213)
- # of comments on a video correlates with -ve sentiment strength (Spearman's rho 0.242, p=0.000) and negatively correlates with +ve sentiment strength (Spearman's rho -0.113) negativity drives commenting even though it is rare!

More about YouTube comments

- ◆ 23% of comments are replies
- Discussion density varies wildly
 - Religion triggers the biggest discussions
 - Music, Comedy and How to & Style categories don't trigger discussions
 - No discussions about aging rock stars!
- YouTube = passive entertainment + active debating/trolling?

YouTube debates for "Law Library Part III"

red = happy replies, black = angry replies

4. Issue adaptation

- Sentiment analysis sometimes performs badly on social web texts relevant to as specific issue or topic due to unusual uses of words
 - E.g., "pistol" is not negative and flame" is mildly positive for olympic tweets
 - E.g., "fire" and "flame" are very negative in the context of UK riots tweets

Issue adaptation methods 1: Mood

- Mood is set to negative or positive
 - E.g.. UK Riots: negative, Olympics: positive
- Expressions of sentiment without polarity are interpreted as negative if there is a negative mood, positive if a positive mood.
 - E.g., "Miiiikee!!!" is positive for olympics, negative for riots.

Mood results

	Train.	Test	Train.	Train.	Test	Test
			corr.	corr.	corr.	corr.
	s size	size	pos.	neg.	pos.	neg.
			mood	mood	mood	mood
Riots	847	846	0.3603	0.4348	0.3243	0.4104
AV	8846	8847	0.4152	0.3214	0.4038	0.3023

Issue adaptation methods 2: Issue-specific words

- Using a corpus of classified texts:
- Check SentiStrength classification of each text against human code
- For each disagreement, record terms in text
- For each term, count the number of times it is in texts classified as too positive/too negative
- Manually check the top words for domainspecific terminology to add to the lexicon

Example – Riot words added to the lexicon

Term	Weight
arrest	-2
arrested	-2
baton	-2
batoned	-3
birminghamriots	-2
brainwashing	-3
caught	-2

Example – Alternative Vote words added to the lexicon

Term	Weight
ace	3
ass	-2
better	2
cut	-2
fairer	2
fearmongerers	-3

Results

An improvement of up to 8% depending on the topic.

Damping Sentiment Analysis

- ◆ Intuition: in online communication, if a text has a very different sentiment from previous texts in the same monolog/ dialog/discussion then it may be a sentiment analysis classification error
- Develop damping method to align sentiment scores closer to the average

Example classification error

Tweet (first 3 from Stacey, last from	
Claire)	Neg. score
@Claire she bores me too! Haha x	-2
@Claire text me wen your on your	
way x x x	-1
@Claire u watch BB tonight? I tried	
one of them barsreem! x x x	-1
@Stacey lush in they do u watch	
American horror story Cbb was	
awsum tonight bunch of bitches!!	7-4

Damping rules

- ◆ If the classified positive sentiment of text A differs by at least 1.5 from the average positive sentiment of the previous 3 posts, then adjust the positive sentiment prediction of text A by 1 point to bring it closer to the positive average of the previous 3 terms.
- ◆ If the classified negative sentiment of text A differs by at least 1.5 from the average negative sentiment of the previous 3 posts, then adjust the negative sentiment prediction of text A by 1 point to bring it closer to the negative average of the previous 3 terms.

e.g., 4, 4, 4, 1 -> 4, 4, 4, 2 and 1, 1, 2, 4 -> 1, 1, 2, 3

Data sets

- BBC World news discussions (BWNpf)
- RunnersWorld (RWtf)
- Twitter monologs (Tm)
- ◆ Twitter dialogs (Td)

Results

- Damping improves sentiment classification by a small amount in some cases but makes it worse in others
- The four different types of damping have different effects on performance
 - +ve/-ve sentiment increase/decrease
- Sentiment damping seems to work but needs a lot of testing to find the right types for a particular data set.

- Sentiment analysis exploits the free availability of social web texts to gain new insights into the issues discussed
- Investigating social web sentiment:
 - What is the role of sentiment in discussions of topic X or social web site X? (e.g., YouTube comments)
 - Can phenomenon X be explained by patterns of sentiment in discussions of it? (e.g., media events)
 - What are the differences in the levels of sentiment between X and Y? (e.g., Twitter vs. Facebook)

Free sentiment analysis: SentiStrength; Free data collection: Webometric Analyst