
Large-scale text processing
pipeline with Apache Spark

Alexey Svyatkovskiy, Kosuke Imai, Mary Kroeger, Yuki Shiraito

Princeton University

Big NLP Workshop, IEEE Big Data conference, Washington DC, December 5th 2016

OUTLINE
• Policy diffusion detection in U.S. legislature: the problem

• Solving the problem at scale
• Apache Spark, Hadoop, Scala
• Text processing pipeline: core modules

• Text processing pipeline
• Data ingestion. Apache Avro and Parquet data formats

• Pre-processing and feature extraction
• Candidate selection via clustering

• Policy diffusion detection modes
• All-pairs similarity join

• Reformulating problem as a network graph

• Interactive analysis with Histogrammar tool

• Conclusion and next steps

POLICY DIFFUSION DETECTION: THE PROBLEM
• Policy diffusion detection is a problem from a wider class of fundamental text mining problems of finding

similar items, including plagiarism and mirror website detection

• It occurs when government decisions in a given jurisdiction are systematically influenced by prior policy
choices made in other jurisdictions, in a different state on a
different year

• Example: “Stand your ground” bills first introduced in
Florida, Michigan and South Carolina 2005

• A number of states have passed a form of SYG bills
in 2012 after T. Martin’s death

• We focus on a type of policy diffusion that can be
detected by examining similarity of bill texts

States that have passed SYG laws
States that have passed SYG laws since T. Martin’s death
States that have proposed SYG laws after T. Martin’s death

Service node 1

Zookeeper
Journal node
Primary namenode
httpfs

Service node 2

Zookeeper
Journal node
Resource manager
Hive master

Service node 3

Zookeeper
Journal node
Standby namenode
History server

Datanodes

Spark
HDFS
Datanode service

Login node
Spark
Hue
YP server
LDAP
…

SSH

• A 10 node SGI Linux Hadoop cluster
• Intel Xeon CPU E5-2680 v2 @ 2.80GHz CPU processors, 256 GB RAM
• All the servers mounted on one rack and interconnected using a 10 Gigabit

Ethernet switch
• Cloudera distribution of Hadoop configured in high-availability mode using two

namenodes
• Schedule Spark applications using YARN
• Distributed file system (HDFS)

ANATOMY OF A SPARK APPLICATIONS
• Spark uses master/slave architecture with one central coordinator (driver) and many distributed workers (executors)

• Driver runs its own Java process, executors each run their own Java processes

• For PySpark, SparkContext uses Py4J to launch a JVM and create a JavaSparkContext

• Executors all ran in JVMs, and Python subprocesses (tasks) which are launched communicate with them using pipes

• We choose Scala for our implementation because unlike Python and R it is statically typed, and the cost of JVM
communication is minimal

For Java/Scala (JVM) languages

Cluster manager
Driver program

Worker node/container

Worker node/container
SparkContext

Executor

Executor

Cache

Cache

Task Task

TaskTask

For Python

Cluster manager

Driver program

Worker node/container

Worker node/container

SparkContext

Executor,
in JVM

Executor,
in JVM

Cache

Cache

Subpr Subpr

SubprSubpr

SparkContext

Py4J launches JVM

Pipes

Pipes
See more here:
https://cwiki.apache.org/confluence/display/SPARK/PySpark+Internals

TEXT PROCESSING PIPELINE: CORE MODULES

Document similarity calculation
Represent document pairs and similarities as

weighted undirected graph. Perform PageRank and
graph queries using GraphFrames package

Intermediate
Parquet sink on HDFS

Raw unstructured text data

Structured, compressed data in
Avro format

Pre-processing and Feature extraction

k-means clustering, candidate pair
selection

HDFS storage Distributed processing with Spark ML Statistical analysis, aggregation,
plotting using Histogrammar package

DATA INGESTION
• Our dataset is based on the LexisNexis StateNet dataset which contains a total of more than 7 million

legislative bills from 50 US states from 1991 to 2016

• The initial dataset contains unstructured text documents sub-divided by year and state

• We use Apache Avro serialization framework to store the data and access it efficiently in Spark applications

• Binary JSON meta-format with schema stored with the data

• Row-oriented, good for nested schemas. Supports schema evolution

Unique identifier of the bill

Used to construct predicates and filter
the data before calculating joins

Entire contents of the bill as a string, not
read into memory during candidate selection
and filtering steps, thanks to the Avro schema
evolution property

MACHINE LEARNING: SPARK ML
• Spark ML standardizes APIs for machine learning algorithms to make it easier to combine multiple

algorithms into a single pipeline or workflow

Here are the basic components of a pipeline

• Transformer: A Transformer is an algorithm which can transform one DataFrame into another DataFrame.
Each transformer class has a Transform method

• E. g. tokenizer, stop word remover are transformers

• Estimator: An Estimator is an algorithm which can be fit on a DataFrame to produce a Transformer. E.g., a
learning algorithm is an Estimator which trains on a DataFrame and produces a modeL. Each estimator
class has a Fit method

• E.g. RandomForest classifier

• Parameter: All Transformers and Estimators share a common API for specifying parameters

• The Pipeline concept is inspired by the scikit-learn project

PREPROCESSING AND FEATURE EXTRACTION (I)

• Tokenize: A simple way to tokenize a string (sentence) in Python is using the split() method

• Spark ML has 2 tokenizers: the (default) Tokenizer, which tokenizes on whitespace and RegexTokenizer which allows to
specify a custom pattern to tokenize on other than white space. The latter is more flexible

• N-grams: Instead of looking at just single words, it is also useful to look at n-grams, the n-word long sequences

• Remove stopwords: omit certain common words which bear no meaning of documents like "a", "an", and "the"

• Spark ML contains a standard list of such stop words for English. One can include any custom stopwords, if need be

• Stemming: It would have been useful to identify words like "computer" and "computers” as one word. The
process of replacing them by a common root, or stem, is called stemming - the stem will not, in general, be a
full word itself

PREPROCESSING AND FEATURE EXTRACTION (II)

• Feature hashing: is a way of vectorizing features, E.g. turning text features into indices in a vector or matrix. It
works by applying a hash function to the features and using their hash values as indices

• A hash function takes a string as an input and spits out a number, with the desired property being that different inputs
usually produce different outputs (no hash collisions)

• TF-IDF weighting: (term-frequency inverse document frequency) is a feature vectorization method in text mining
to reflect importance of a term t to a document d in corpus d

𝐼𝐷𝐹(𝑡, 𝐷) = log
𝐷 + 1

𝐷𝐹 𝑡, 𝐷 + 1 𝑇𝐹𝐼𝐷𝐹 𝑡, 𝑑, 𝐷 = 𝑇𝐹 𝑡, 𝑑 ●𝐼𝐷𝐹(𝑡, 𝐷)

DIMENSION REDUCTION: TRUNCATED SVD
• SVD is applied to the TF-IDF document-feature matrix to perform semantic decomposition and extract concepts which

are most relevant for classification

• SVD factorizes the document-feature matrix 𝑀 (mx𝑛) into three matrices: 𝑈, Σ, and 𝑉, such that:
𝑀 = 𝑈 6 Σ 6 𝑉7

Here m is the number of legislative bills (order of 109), 𝑘 is the number of concepts, and 𝑛	 is the number of features (2=>)

• The left singular matrix 𝑈	 is represented as distributed row-matrix, while Σ and 𝑉	 are sufficiently small to fit into Spark
driver memory

mx𝑘 𝑘x𝑘 𝑛x𝑘

𝑘
m ≫ 𝑛	 ≫ 𝑘

𝑘

ALL-PAIRS SIMILARITY (I)

• Previous work in policy diffusion has been unable to make an all-pairs comparison between bills for a
lengthy time period because of computational intensity

• Brute-force all-pairs calculation between the texts of the state bills requires calculating a cross-join, yielding
O(10=@) distinct pairs

• As a substitute, scholars studied single topic areas

• Focusing on the document vectors which are likely to be highly similar is essential for all-pairs comparison at
scale

• Modern studies employ variations of nearest-neighbor search, locality sensitive hashing (LSH), as well as
sampling techniques to select a subset of rows of TF-IDF matrix based on the sparsity (DIMSUM)

• Our approach utilizes K-means clustering (details on the next slide)

• We plan to include MinHash LSH in future

ALL-PAIRS SIMILARITY (II)
• Our approach utilizes K-means clustering to identify groups of documents which are likely to belong to the same

diffusion topic, reducing the number of comparisons in the all-pairs similarity join calculation

Brute-force: just calculate all combinatorial pairs
in the dataset

With K-means: first, split the dataset into K clusters (buckets),
next only calculate all combinatorial pairs within each
cluster

Too slow…

• Use within-set sum of squared errors as an objective of
optimization (cost function)

• Tests show 40 iterations is necessary to get meaningful
result

• Use 150 clusters for 3 states, 450 clusters for 50 states

SIMILARITY MEASURES: JACCARD
• Jaccard distance between sets:

𝐷(𝐴,𝐵) = 	 |D∩F||D∪F| =
|D∩F|

D H F I|D∩F|

• Best results achieved for TF features with a relatively large N-gram granularity and key-distance

Key distance: consider feature vectors as sets of indices Hash distance: consider dense vector representations. Suitable
when vectors are generated by hashing (like MinHash):

SIMILARITY MEASURES: COSINE
• Cosine distance between feature vectors

D(A,B)= (D6F)
|D|6|F|

• We convert all distances (D) to similarities (S) assuming inverse proportionality, and rescaling it to
[0,100] range and add a regularization term:

𝑆 =	
100
1 + 𝐷

• Similarity calculation between feature vectors reaches into Spark’s private linear algebra code, to
use BLAS dot product

• Best results achieved for TF-IDF features with truncated SVD applied, a relatively small N-gram
granularity or a unigram

𝐴

𝐵

INTERACTIVE ANALYSIS WITH HISTOGRAMMAR TOOL
• Histogrammar is a suite of composable aggregators with

• A language-independent specification

• Several language versions (Python and Scala are the most complete)

• An interchangeable JSON format

• Multiple filling back-ends (examples follow),

• No built-in plotting, but has Matplotlib, Bokeh front-ends

http://histogrammar.org/docs/

Contact Jim Pivarski
or me to contribute!

GRAPHFRAMES

• GraphFrames is an extension of Spark allowing to perform graph queries and graph algorithms
on Spark dataframes

• A GraphFrame is constructed using two dataframes (a dataframe of nodes and an edge dataframe),
allowing to easily integrate the graph processing step into the pipeline along with Spark ML

• Graph queries: like a Cypher query on a graph database (e.g. Neo4j)

• Graph algorithms: PageRank, Dijkstra

• Possibility to eliminate joins

bill1 bill2 similarity

FL/2005/SB436 MI/2005/SB1046 91.38

FL/2005/SB436 MI/2005/HB5143 91.29

FL/2005/SB436 SC/2005/SB1131 82.89 Currently undirected,
switch to directed by time

SB346

SB1046

HB5143

SB1131

For similarity above
threshold

APPLICATIONS OF POLICY DIFFUSION
DETECTION TOOL

• The policy diffusion detection tool can be used in a number of modes:

• Identification of groups of diffused bills in the dataset
given a diffusion topic (for instance, “Stand your ground” policy, cyberstalking, marijuana laws etc)

• Discovery of diffusion topics: consider top-similarity bills within each cluster, careful filtering of uniform
bills and interstate compact bills is necessary as they would show high similarity as well

• Identification of minimum cost paths connecting two specific legislative proposals on a graph

• Identification of the most influential US states for policy diffusion

• The research paper on applications of the tool is currently in progress

PERFORMANCE SUMMARY
• Spark applications have been deployed on Hadoop cluster using YARN

• 40 executor containers, each using 3 executor cores and 15 GB of RAM per JVM

• Use external shuffle service inside the YARN node manager to improve stability of memory-intensive jobs with
larger number of executor containers

• Calculate efficiency of parallel execution as

𝐸 = 𝑇0
𝑁𝑒𝑥𝑒𝑐 ∙𝑇𝑁

Single executor case

Time using 𝑁QRQS executors

CONCLUSIONS
• Evaluated Apache Spark framework for the case of data-intensive machine learning problem of policy

diffusion detection.

• Provided a scalable method to calculate all-pairs similarity based on K-means clustering

• Implemented a text processing pipeline utilizing Apache Avro serialization framework, Spark ML, GraphFrames,
and Histogrammar suite of data aggregation primitives

• Efficiently calculate all-pairs comparison between legislative bills, estimate relationships between bills on a graph,
potentially applicable to a wider class of fundamental text mining problems of finding similar items

• Tuned Spark internals (partitioning, shuffle) to obtain good scaling up to O(100) processing cores, yielding
80% parallel efficiency

• Utilized Histogrammar tool as a part of the framework to enable interactive analysis, allows a researcher to
perform analysis in Scala language, integrating well with Hadoop ecosystem

BACKUP SLIDES

SPARK SOFTWARE STACK

Use SLURM on general purpose HPC clusters

Storage:

HDFS

NFS

GPFS

Spark R

Infiniband

10g ethernet

Read: Distributed
Pandas Dataframe

Supports
Kafka, Flume sinks

Cassandra

Available
starting Spark 1.5

Interconnect:

Use on Hadoop cluster

Red color: Specific to Princeton clusters

https://www.princeton.edu/researchcomputing/computational-hardware/hadoop/
https://www.princeton.edu/researchcomputing/computational-hardware/machine-2/

HADOOP CLUSTER COMPONENTS
• RESOURCE MANAGER – THE YARN RESOURCE MANAGER (RM) IS RESPONSIBLE FOR TRACKING THE RESOURCES IN A CLUSTER AND

SCHEDULING APPLICATIONS (FOR EXAMPLE, SPARK JOBS)

• (JOB) HISTORY SERVER – YARN REQUIRES A STAGING DIRECTORY FOR TEMPORARY FILES CREATED WHILE RUNNING JOBS. ALSO,
DIRECTORY FOR LOG FILES OF FINISHED JOBS

• NAMENODES – HADOOP CLUSTER FOLLOWS A MASTER-WORKER PATTERN, HERE NAMENODE IS THE MASTER TO DATANODES
(WORKERS). NAMENODES MANAGE THE FILESYSTEM TREE AND METADATA. IN THE HIGH AVAILABILITY CONFIGURATION, 2 OR MORE
NAMENODES IS RAN ON THE SAME CLUSTER, IN AN ACTIVE/PASSIVE CONFIGURATION. THESE ARE REFERRED TO AS THE ACTIVE
NAMENODE AND THE STANDBY NAMENODE(S).

• JOURNAL NODES - IN ORDER FOR A STANDBY NODE TO KEEP ITS STATE SYNCHRONIZED WITH THE ACTIVE NODE IN THIS
IMPLEMENTATION, BOTH NODES COMMUNICATE WITH A GROUP OF SEPARATE DAEMONS CALLED JOURNALNODES. WHEN ANY
FILESYSTEM MODIFICATION IS PERFORMED BY THE ACTIVE NODE, IT LOGS A RECORD OF THE MODIFICATION TO A MAJORITY OF THESE
JOURNALNODES. THE STANDBY NODE IS CAPABLE OF READING THE EDITS FROM THE JOURNALNODES, AND IS CONSTANTLY
WATCHING THEM FOR CHANGES TO THE EDIT LOG. AS THE STANDBY NODE SEES THE EDITS, IT APPLIES THEM TO ITS OWN NAMESPACE.
IN THE EVENT OF A FAILOVER, THE STANDBY WILL ENSURE THAT IT HAS READ ALL OF THE EDITS FROM THE JOURNALNODES BEFORE
PROMOTING ITSELF TO THE ACTIVE STATE.

• DATANODE – WORKER NODE. DAEMONS RUNNING ON DATANODES INCLUDE JOB TRACKER AND HDFS

• OTHER (OPTIONAL) CLUSTER COMPONENTS INCLUDE: SPARK, HIVE, OOZIE, HBASE, HUE…

HADOOP (PUPPET) CLASS HIERARCHY

Hadoop

Base

Historyserver Namenode Datanode

Worker

Spark

Resource manager Journalnode

…
other services like:

Hive & Oozie

Require declared
Inheritance

SHUFFLE

• An intensive shuffle across partitions of the dataset has been identified as the main cause of efficiency
decrease

• Adjusting the fraction of Java heap space used during shuffles allowed to maintain a good scaling beyond 90
processing cores

PERFORMANCE TUNING FOR SPARK APPLICATIONS:
PARTITIONING

• Partition in Spark is a unit of parallel execution that corresponds to one task

• The Partitioner object defines a function from an element of a pair RDD to a partition via a mapping from each
record to partition number (Examples: HashPartitioner, RangePartitioner)

• By assigning a partitioner to an RDD we can control how data is distributed across the nodes on a cluster and minimize
shuffle during joins

• repartition and coalesce transformations are the ways to control the number of partitions, while the Partitioner object
controls “how”

• coalesce is a narrow transformation if the number of partitions is reduced: no shuffle!

The number of tasks that
can be executed concurrently
is limited by the total number
of executor cores in the
Spark cluster

Example: hash partitioning by document ID
guarantees close to uniform distribution over
executor containers, while partitioning by state
would create struggler tasks

WHY DATAFRAMES?
• Spark SQL and its DataFrames are essential for Spark performance with more efficient storage options,

advanced optimizer, and direct operations on serialized data

• Introduced in Spark 1.3 (used to be called schema RDD and inherited directly from RDD)

• Like RDDs, DataFrames represent distributed collections, with
additional schema information not found in RDDs

• This additional schema information is used to provide a more
efficient storage layer and in the optimizer

• Compared to working with RDDs, DataFrames allow Spark’s Catalyst
optimizer to better understand our code and our data

Based on “High performance Spark” by H. Karau et al and personal experience

Example: Planner and Catalyst

