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Introduction

l Difficulty of processing Japanese / Chinese text

l No word boundary

l Word segmentation preprocess

l Hard to segment words include coinages and slang words
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l Large number of different characters

l More than 2,000 different characters for daily use 
(Japanese)



Introduction

l Character-level approaches to Japanese / Chinese text

l Character-level N-gram feature

l Character-level Convolutional Neural Networks (CLCNN)
[Zhang et al. 2015]

l State-of-the-art in English document classification

l Vectorization of character (e.g. one-hot vector, lookup table)

l Data augmentation by using paraphrase
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[Zhang et al. 2015] X. Zhang et al. Character-level Convolutional Networks for Text Classification. In 
Advances in Neural Information Processing Systems, pp. 649–657, 2015.
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These strategies is NOT appropriate for Japanese and Chinese.
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Introduction

l Two New Document Analysis Techniques for CLCNN

i. Image-based Character Embedding

ii. Data augmentation without word segmentation, 
“wildcard training”
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メロスは激怒した。 メロス＊激＊した。
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Embedded space



Key Concept – (i) Image-based Character Embedding

l Focus on Ideographic of Japanese / Chinese characters

l Most of them imply their meanings.

l Similar character shapes have similar meanings to each other.
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Our model handles characters through their “images.” 



Key Concept – (ii) Data Augmentation without Word Segmentation

l Introducing “wildcard” character ―Wildcard Training

l Wildcard is defined as a zero-vector in the embedded space.

l It replaces some input characters randomly 
(like dropout [Hinton et al. 2012]).
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メロスは激怒した。
メロス＊激＊した。

Input text

Wildcard training

Augmented texts

＊ロ＊は激＊した。
メロスは＊怒し＊。

[Hinton et al. 2012] G. Hinton et al. Improving Neural Networks by Preventing Co-adaption of Feature 
Detectors. arXiv:1207.0580, 2012.



The Proposed Method

a. Image-based Character Embedding (CAE)

b. Character-level Classifier with Wildcard Training (CLCNN)
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a. Image-based Character Embedding

l Convolutional Autoencoder (CAE) [Masci et al. 2011] is 
composed of Encoder and Decoder have conv. and pooling layers.

l CAE is trained by reconstruction loss beforehand.

l Our CAE encodes 6,631 character images into 64-dimensional space.
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[Masci et al. 2011] J. Masci et al. Stacked convolutional auto-encoders for hierarchical feature extraction.
Lectures Notes in Computer Science, vol. 6791, pp. 52–59, 2011.
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b. Character-level Convolutional Neural Networks (CLCNN)

l CLCNN performs hierarchical feature extraction and classification.

l It takes image-based embedded characters as input.

l Itʼs trained with wildcard training (WT), dropping some characters 
randomly.

l Wildcard training augments the combinations of characters.
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Experiments and Results

(1)Author Estimation of Japanese Novels (10 classes)

- 104 novels written by 10 authors (almost 10 each)

- Training Dataset: 81 novels (2,010,000 characters)

(2) Publisher Estimation from Japanese Newspaper Articles (4 classes)

- 22,440 articles from four major newspapers (5,610 each)
from economics, politics, international sections

- Training Dataset: 17,952 articles (55,420,000 characters)
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Comparative approaches

- Character-level N-gram + TF-IDF + Logistics Regression (LR)

- Word segmentation + TF-IDF + LR

- Latent Semantic Indexing (LSI) / Latent Dirichlet Allocation (LDA) + LR
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Experiments and Results

(1)Author Estimation of Japanese Novels
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Methods Accuracy [%]
(proposed) CAE + CLCNN + WT 69.57
(proposed) CAE + CLCNN w/o WT 52.17
(proposed) Lookup Table + CLCNN + WT 69.57
Lookup Table + CLCNN w/o WT 65.22
Character-level 3-gram* + TF-IDF 56.52
Word segmentation* + TF-IDF 47.83
LSI (# topics = 60) 73.90
LDA (# topics = 30) 52.10

- In spite of no preprocessing, our method shows the second-best. 

- Wildcard training (WT) raises the performance of CLCNN.

◆ Wildcard training is effective for eliminating overfitting in the classifier

* 3-gram and Word segmentation use top-50,000 most frequently tokens.
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Experiments and Results

(2) Publisher Estimation from Japanese Newspaper Articles
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Methods Accuracy [%]
(proposed) CAE + CLCNN + WT 86.72
(proposed) CAE + CLCNN w/o WT 80.95
(proposed) Lookup Table + CLCNN + WT 79.66
Lookup Table + CLCNN w/o WT 73.13
Character-level 3-gram* + TF-IDF 84.27
Word segmentation** + TF-IDF 67.22
LSI (# topics = 2,000) 84.00
LDA (# topics = 70) 56.10

- Our methods shows the best score in this task.

- Other character-level methods also shows higher score.

◆ Newspaper text is hard to segment words because of  many coinages.

*  3-gram approach uses top-30,000 most frequently tokens.
** Word segmentation approach uses all of morphemes in training data.
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Experiments and Results
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- Some characters form clusters.

- Similar shape characters have similar vector representation.
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● Japanese (Hiragana)
● Japanese (Katakana)
● Alphabet
● Number
● Symbol

は
ば
ぱ
ぼ
げ
ぽ
ほ

ヷ
レ
ン
ク
ケ
グ
ヅ
ソ
ブ

2-D Mapping of Embedded Character Vectors by t-SNE



Conclusion and Future works

l A new document analysis method for Japanese

l Tackling much larger number of characters with 
“Image-based embedding”

l Data augmentation without word segmentation

l Towards applying to different languages / NLP tasks

l Chinese, Korean etc.

l Tasks that need normalization process (e.g. Entity-linking)
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Appendix｜Loss Curve of CLCNN Training (Author Estimation)
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Appendix｜Loss Curve of CLCNN Training (Publisher Estimation)
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