Document Classification through Image-Based Character Embedding and Wildcard Training

Daiki Shimada, Ryunosuke Kotani, Hitoshi Iyatomi

Applied Informatics, Graduate School of Science and Engineering, Hosei University, Japan

- Difficulty of processing Japanese / Chinese text
 - No word boundary
 - Word segmentation preprocess

Melos was enraged.

メロスは激怒した。

• Hard to segment words include coinages and slang words

- Large number of different characters
 - More than 2,000 different characters for daily use (Japanese)

- Character-level approaches to Japanese / Chinese text
 - Character-level N-gram feature
 - Character-level Convolutional Neural Networks (CLCNN) [Zhang et al. 2015]
 - State-of-the-art in English document classification
 - Vectorization of character (e.g. one-hot vector, lookup table)
 - Data augmentation by using paraphrase

[Zhang et al. 2015] X. Zhang et al. Character-level Convolutional Networks for Text Classification. In Advances in Neural Information Processing Systems, pp. 649–657, 2015.

- Character-level approaches to Japanese / Chinese text
 - Character-level N-gram feature
 - Character-level Convolutional Neural Networks (CLCNN) [Zhang et al. 2015]
 - State-of-the-art in English document classification
 - Vectorization of character (e.g. one-hot vector, lookup table)
 - Data augmentation by using paraphrase

These strategies is NOT appropriate for Japanese and Chinese.

[Zhang et al. 2015] X. Zhang et al. Character-level Convolutional Networks for Text Classification. In *Advances in Neural Information Processing Systems*, pp. 649–657, 2015.

- Two New Document Analysis Techniques for CLCNN
 - i. Image-based Character Embedding

ii. Data augmentation without word segmentation, "wildcard training"

Key Concept – (i) Image-based Character Embedding

- Focus on Ideographic of Japanese / Chinese characters
 - Most of them imply their meanings.
 - Similar character shapes have similar meanings to each other.

Our model handles characters through their "images."

Key Concept – (ii) Data Augmentation without Word Segmentation

- Introducing "wildcard" character Wildcard Training
 - Wildcard is defined as a zero-vector in the embedded space.
 - It replaces some input characters randomly (like dropout [Hinton et al. 2012]).

[Hinton et al. 2012] G. Hinton et al. Improving Neural Networks by Preventing Co-adaption of Feature Detectors. *arXiv:1207.0580*, 2012.

The Proposed Method

- a. Image-based Character Embedding (CAE)
- b. Character-level Classifier with Wildcard Training (CLCNN)

The Proposed Method

a. Image-based Character Embedding (CAE)

b. Character-level Classifier with Wildcard Training (CLCNN)

a. Image-based Character Embedding

- Convolutional Autoencoder (CAE) [Masci et al. 2011] is composed of Encoder and Decoder have conv. and pooling layers.
- CAE is trained by reconstruction loss beforehand.
- Our CAE encodes 6,631 character images into 64-dimensional space.

[Masci et al. 2011] J. Masci et al. Stacked convolutional auto-encoders for hierarchical feature extraction. *Lectures Notes in Computer Science*, vol. 6791, pp. 52–59, 2011.

The Proposed Method

- a. Image-based Character Embedding (CAE)
- b. Character-level Classifier with Wildcard Training (CLCNN)

b. Character-level Convolutional Neural Networks (CLCNN)

- CLCNN performs hierarchical feature extraction and classification.
- It takes image-based embedded characters as input.
- It's trained with *wildcard training (WT)*, dropping some characters randomly.
 - Wildcard training augments the combinations of characters.

(1) Author Estimation of Japanese Novels (10 classes)

- 104 novels written by 10 authors (almost 10 each)
- Training Dataset: 81 novels (2,010,000 characters)

(2) Publisher Estimation from Japanese Newspaper Articles (4 classes)

- 22,440 articles from four major newspapers (5,610 each) from economics, politics, international sections
- Training Dataset: 17,952 articles (55,420,000 characters)

Comparative approaches

- Character-level N-gram + TF-IDF + Logistics Regression (LR)
- Word segmentation + TF-IDF + LR

- Latent Semantic Indexing (LSI) / Latent Dirichlet Allocation (LDA) + LR

(1) Author Estimation of Japanese Novels

Methods	Accuracy [%]
(proposed) CAE + CLCNN + WT	69.57
(proposed) CAE + CLCNN w/o WT	52.17
(proposed) Lookup Table + CLCNN + WT	69.57
Lookup Table + CLCNN w/o WT	65.22
Character-level 3-gram* + TF-IDF	56.52
Word segmentation* + TF-IDF	47.83
LSI ($\#$ topics = 60)	73.90
LDA ($\#$ topics = 30)	52.10

* 3-gram and Word segmentation use top-50,000 most frequently tokens.

- In spite of no preprocessing, our method shows the second-best.

- Wildcard training (WT) raises the performance of CLCNN.

Wildcard training is effective for eliminating overfitting in the classifier

(2) Publisher Estimation from Japanese Newspaper Articles

Methods	Accuracy [%]
(proposed) CAE + CLCNN + WT	86.72
(proposed) CAE + CLCNN w/o WT	80.95
(proposed) Lookup Table + CLCNN + WT	79.66
Lookup Table + CLCNN w/o WT	73.13
Character-level 3-gram* + TF-IDF	84.27
Word segmentation** + TF-IDF	67.22
LSI (# topics = 2,000)	84.00
LDA ($\#$ topics = 70)	56.10

* 3-gram approach uses top-30,000 most frequently tokens.

** Word segmentation approach uses all of morphemes in training data.

- Our methods shows the best score in this task.

- Other character-level methods also shows higher score.

Newspaper text is hard to segment words because of many coinages.

2-D Mapping of Embedded Character Vectors by t-SNE

- Some characters form clusters.
- Similar shape characters have similar vector representation.

Conclusion and Future works

- A new document analysis method for Japanese
 - Tackling much larger number of characters with "Image-based embedding"
 - Data augmentation without word segmentation
- Towards applying to different languages / NLP tasks
 - Chinese, Korean etc.
 - Tasks that need normalization process (e.g. Entity-linking)

Appendix | Loss Curve of CLCNN Training (Author Estimation)

Appendix | Loss Curve of CLCNN Training (Publisher Estimation)

