

Domain-specific user preference prediction based on multiple user activities

Author: YUNFEI LONG, Qin Lu, Yue Xiao, MingLei Li, Chu-Ren Huang.

www.comp.polyu.edu.hk/

Dept. of Computing, The Hong Kong Polytechnic University

Outline

1

Introduction

2

Dataset Construction

3

Our Proposed Method

4

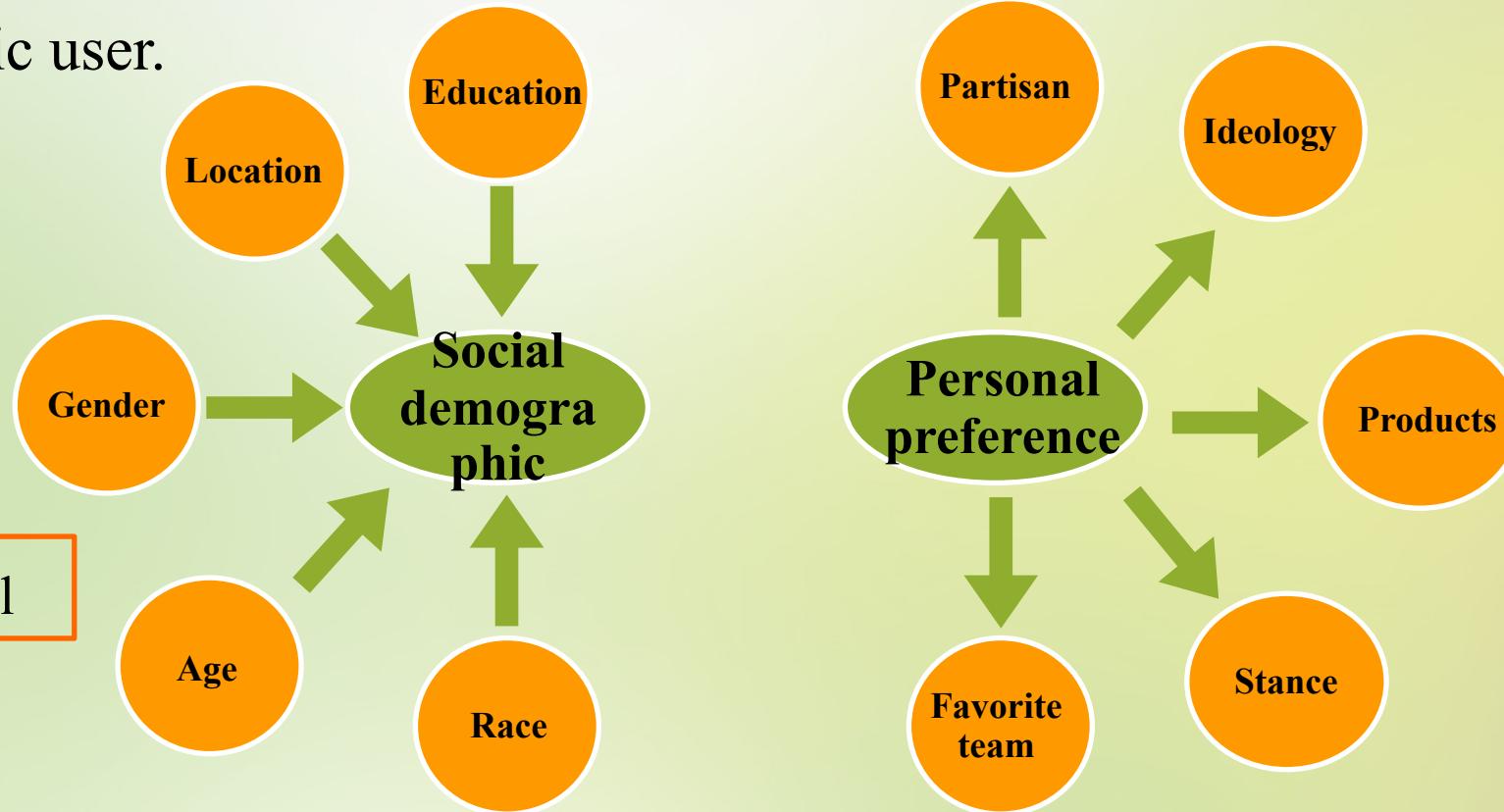
Experiments

5

Conclusion

Introduction

- **What is User profile?** A visual display of personal data associated with a specific user.



- **Why acquiring user profiles?**

- Personalized recommendation
- Personalized opinion/emotion
- Prediction of stances

Current Problems

- How to acquire user profiles from the web?
 - Explicit: **Structured profile components in web pages.**
 - Implicit: **User activities (Posted text, Social network and Interested topics).**
- The Challenges:
 - Structured information is sparsely available: **use of unstructured data.**
 - Hard to explore multiple components of user activities at the same time: **Proposed an integrated framework.**
 - Lack of user activity and user profile data: **Build dataset for benchmarking/experiments.**

Related Works

- **Previous Methods for User profile prediction:**
 - Linear classification learning based: Feature + classifier (Rao and Yarowsky. 2010)
 - Features: BoW, POS, excitement, social linguistic (agreement, abbreviation, and punctuation...)
 - Classifiers: SVM, Logistic regression, Naïve Bayes, etc.
 - Need labor intensive feature engineering.
 - *Features especially social linguistic related features need professional designing.*
 - Hard to incorporate non-text features.
 - Mostly in user social demographic detection: Gender, Age, Race...(Rao and Yarowsky. 2010)

Our Objectives

- Build a user profile data include three parts of user activities: **user posted comments, user social network and user interested topics.**
- Build an **integrated model** to learn **user preference** from three part of activities.
- **Solution based on two premises**
 - **Homophily theory**: similar individuals have similar preferences.
 - **Embedding theory**: similar users are represented by similar vectors if they are making similar comments, having similar followers, or sharing similar interested topics.

Corpus Construction

□ Data Source:

- **Hupu**(虎扑) basketball discussion forum . (<http://cba.hupu.com/>)
- All discussing threads from March 2012 to April 2016.

Statistics	Number
Users	17011
Comments	423758
Connected users	76447
Topics/threads	38455

Statistic of collected Hupu corpus

Model Name	Min	Max	Average
Comments	1	1747	25
Friends	1	1500	69
Topics	1	742	17

User activity information

- Reflect the unbalanced activities problem in social media data.

Corpus Construction

□ User preferred teams:

- **Basketball**, user can select one of CBA's 20 team as he/she's favorite

team.

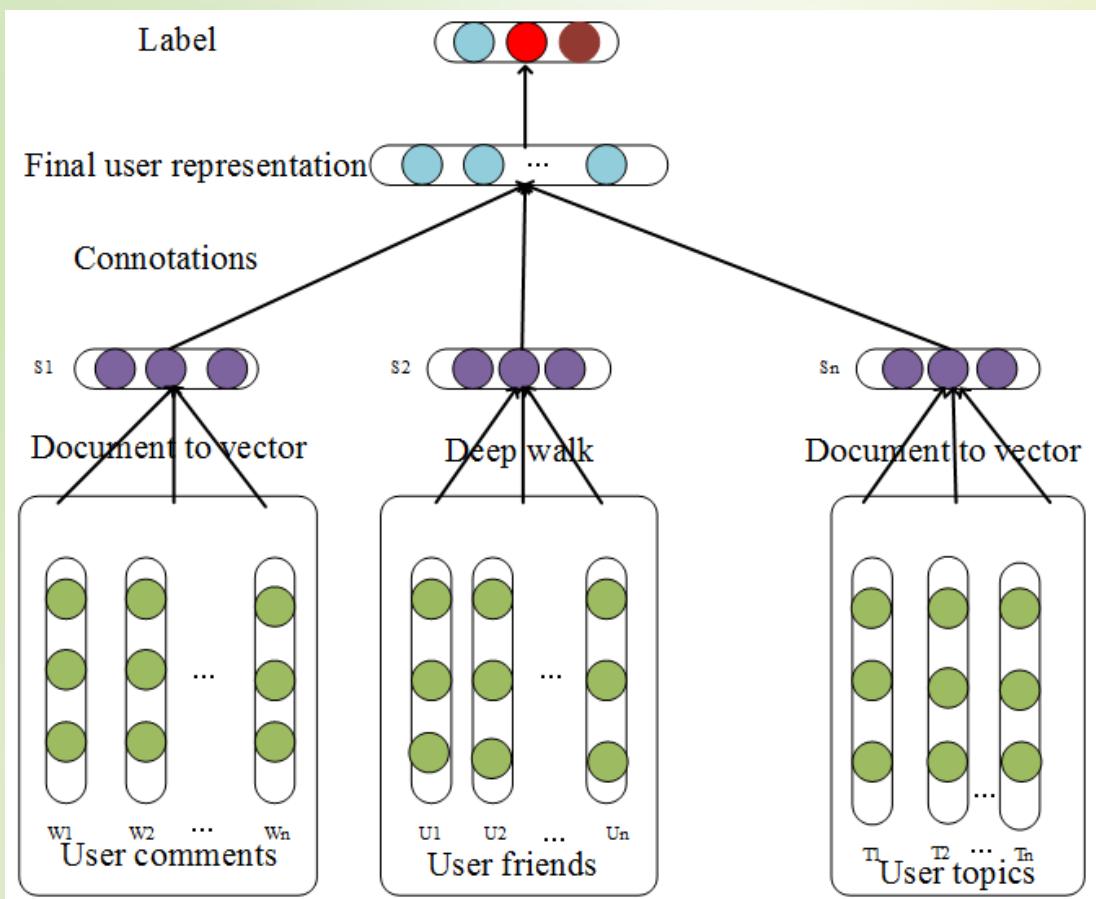
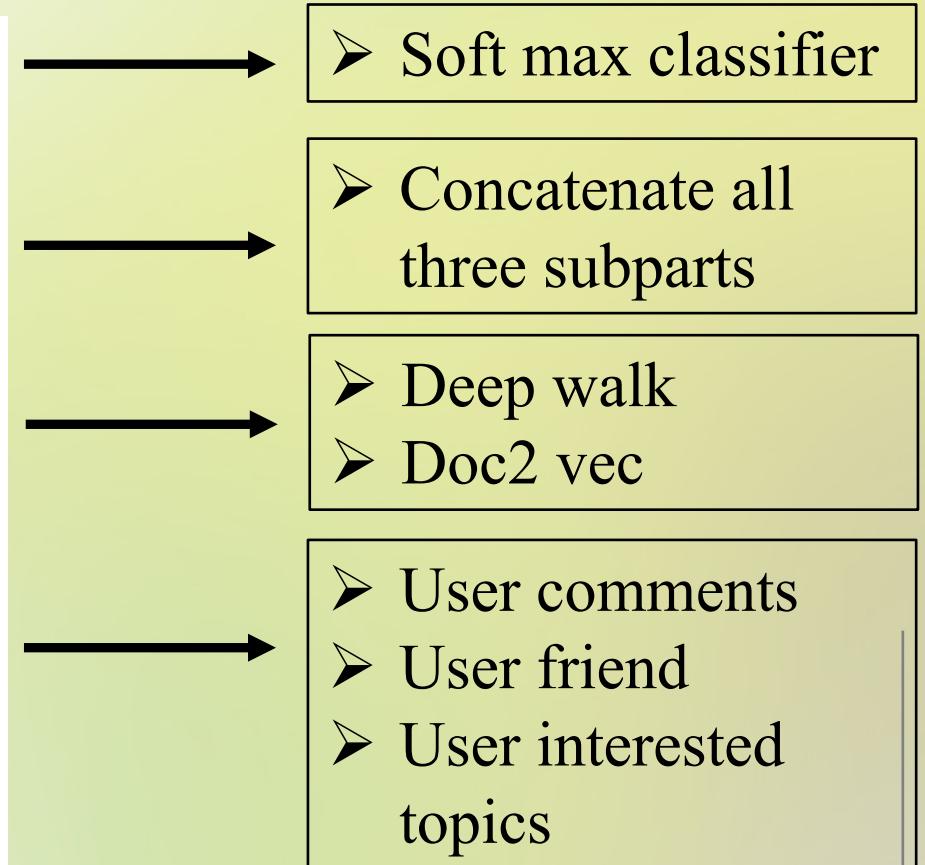
我是傻麦基	
性 别:	男
所 在 地:	浙江省杭州市
NBA主队:	火箭
CBA主队:	浙江广厦猛狮
中超主队:	恒大
User Name:	WO SHI SHA MAI JI
Gender:	Male
Location:	Zhejiang, Hangzhou City
NBA favorite team:	Rocket
CBA favorite team:	Zhejiang Lion
CSL favorite team:	Guangzhou HengDa

- 17,011 users have favorite team, not uniformly distributed.
 - Popular teams like Guangdong Southern Tigers and Beijing Ducks have 4,221 and 3,159 loyalists.
 - The least popular teams like Beijing Fly Dragons and Jiangsu Kings only have 31 and 42 loyalists.
 - Reflects the unbalanced labeling problems in social media data.
 - More reliable as golden answer

Proposed model: Model framework

□ Task: User preferred team prediction.

□ Model framework:



User representation

□ User representation by three parts of user activities:

$$u_i \propto \{G_{W_i}, G_{S_i}, G_{I_i}\}$$

- User comments, user social network and user interested topic are represented as $G_{W_i}, G_{S_i}, G_{I_i}$ respectively.

□ Integrated User representation:

- Let e_W, e_S, e_I represent **Comments(words), Social Networks and interested topics**)

$$e_U = e_W \oplus e_S \oplus e_I$$

□ Comments representation:

- Input: user generated comments.
- Document embedding problem
- Embedding algorithm: Document to Vector. (Doc2vec, Mikolov 2014)

User representation

- **Social network representation:**

- Input: User, Friends in user social network.
 - User and User's friend build a net work, we can use network embedding to obtain this representation.
 - Embedding algorithm: DeepWalk (Perozzi 2014)

- **Interested topic representation:**

- Input: Topic threads in its list
 - User's interested topic can be treated as 'words', except no word order.
 - Embedding algorithm: Document to Vector. (Doc2vec, Mikolov 2014)

Performance Evaluation

□ Compare to other user presentation models:

- Task: prediction user's favorite team, a 20 class classification task.
- Classifier: Soft-max classifier, no parameter tuning.
- The dimension size of all experiments are set to 300 except BOW.

Model Name	Precision	Recall	F-score
Bag-of-words	0.2472	0.2695	0.2579
Latent Dirichlet Allocation	0.1745	0.2742	0.2133
Average word embedding	0.2241	0.2914	0.2538
Document-to-vector (Doc2vec)	0.3503	0.3689	0.3594
Singular Value Decomposition	0.3709	0.3176	0.3422
Probabilistic Matrix Factorization	0.3776	0.3564	0.3667
Integrated User Representation model (our proposed model):	0.4182	0.3521	0.3822

Experiment: Impact of user activity components

- Examine the effect of each user activity: Comment (C), Network (N) and Interested topics (I).

Feature Combination	Precision	Recall	F-score	P-value
Comment(C)	0.4014	0.3487	0.3707	0.0007
Network(N)	0.1996	0.2520	0.2227	<=10e-15
Interested Topics(I)	0.1875	0.2516	0.2149	<=10e-15
N+I	0.2880	0.2601	0.2738	<=10e-15
C+I	0.4011	0.3507	0.3741	0.002
C+N	0.4066	0.3502	0.3763	0.032
C+N+I	0.4052	0.3632	0.3815	N/A

Performance of different user activities

Performance Analysis

- Both user comments, user social network and user interested topic contain user preference information.
- Social networks and topics are not sufficient for the preference prediction task. ----May be due to the data sparseness issue in this dataset.
- Precision in the all integrated version is slightly lower than using only user comments and social network data. ---When recall is improved, more noise may also be introduced to have adverse effect on precision.

Conclusion

- A user profile corpus contain multiple activities. public available
 - To be made publically available after final check.
- A novel **integrated model** to learn user profiles from multiple user activities.
 - **Different embedding methods for different component**
 - **Best performance to all baseline methods**

□ Future Works:

- Deal with data sparseness and imbalance problem.

Thank you!

Selected Reference:

- B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of social representations,” in *Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining*. ACM, 2014, pp. 701–710.
- D. Rao and D. Yarowsky, “Detecting latent user properties in social media,” in *Proc. of the NIPS MLSN Workshop*. Citeseer, 2010.
- Q. V. Le and T. Mikolov, “Distributed representations of sentences and documents,” *arXiv preprint arXiv:1405.4053*, 2014.
- S. Volkova, G. Coppersmith, and B. Van Durme, “Inferring user political preferences from streaming communications.” in *ACL (1)*, 2014, pp. 186–196.
- S. T. Dumais, “Latent semantic analysis,” *Annual review of information science and technology*, vol. 38, no. 1, pp. 188–230, 2004.