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NLP for Web Data

Some challenges

e |anguage-specific English: go
C German: gehen, he, hst, ht,
characteristics, e.g., on R
morphology Korean:

e Data: supervised vs.

unsupewlsed @Lolo_B_Mackin aww
e Non-canonical language thanxxxxx it shud be

e Complexity back on tomorrow :-)



Why Character-Based NLP?

Challenges

e |anguage-specific
characteristics, e.g.,
morphology

e Data: supervised vs.
unsupervised

e Non-canonical language

Character-based NLP

e \Word-level modeling

e Generalization ability,
data efficiency
e Robustness



State of the Art

Character-based approach applied to:

e POS tagging:

[dosSantos&Zadrozny, ICML’14][Ling*, EMNLP’15][Plank®, ACL’'16], etc.
Parsing: [Ballesteros™,EMNLP’15], etc.

Language model: [Ling®, EMNLP’15][Kim+, AAAI'16], etc.

Machine translation: [Costa-jussa®, ACL’16], etc.

Bottom line:

e More compact models
e Competitive with word-level approach but not clearly better



Morphological Tagging

Input: I see four words
Output: .. POS=verb: . POS=noun:
NUMBER=sing: NUMBER=plur:
TENSE=pres CASE=acc:Etc.

e Unlike English, morphologically-rich languages encode a
large amount of information at the word level



Neural Network Architecture
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Char-Based
Word Vectors
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Languages & Data

Language Train tokens (k)
Arabic/UD 256
Bulgarian/UD 124
Czech/PDT 691

UD 1174
English/UD 205
Estonian/UD 188
Finnish/UD 163
French/UD 367
German/TIGER 760
Hindi/UD 281
Hungarian/UD 33
Korean/SPMRL 296
Romanian/UD 109
Russian/UD 815
Turkish/UD 42

Language #Tags Entropy TTR (%)
Arabic/UD 320 32.5 12
Bulgarian/UD 448 49.5 12
Czech/PDT 878 Vi 11

UD 1418 91.7 11
English/UD 119 27.9 7
Estonian/UD 787 513 13
Finnish/UD 1593 76.1 17
French/UD 197 34.1 8
German/TIGER 681 97.7 13
Hindi/UD 922 56.9 7
Hungarian/UD 652 64.5 14
Korean/SPMRL 1976 119.4 20
Romanian/UD 444 65.8 7
Russian/UD 434 54.6 16
Turkish/UD 987 73.0 10




MarMoT ---------
LSTM-BLSTM —ill—

BLSTM-BLSTM [Ling+,2015]
CNN-BRNN-CRF [Labeau+,2015]
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Unsupervised Data via Word2Vec

relative gain over MarMoT (%)
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Language mp tokens (M) Train tokens (k)
Arabic/UD 3 256
Bulgarian/UD 46 124
Czech/PDT 83 691

UD 83 1174
English/UD 2252 205
Estonian/UD 21 188
Finnish/UD 64 163
French/UD 215 367
German/TIGER 610 760
Hindi/UD 32 281
Hungarian/UD 88 33
Korean/SPMRL 56 296
Romanian/UD 51 109
Russian/UD 68 815
Turkish/UD 49 42




(Synthetic) Noisy Input

0% char flips:

zwar kdénnen sich die meisten
topmanager durchaus einen
unternehmer als préadsidenten
vorstellen - nur nicht

ausgerechnet perot

20% char flips:

zwaz koénnen s8c: die msistbn
topmmna (er durc,aus einen
unternehmer all préadsidnten
vr(stellen n sur nicht

ausgerecbn(t oerot

<unk> kdnnen <unk> die

<unk> <unk> <unk> einen

Test error (%)
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#words / second

Training & Run Times (German/TIGER)
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Used Torch7 to configure and train networks
Compute char-based word vectors of a sentence in parallel

(no further optimization so far)
GPU (Titan X)
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Summary

Clear & systematic gains across different languages
(except English and French) for morphological tagging
Vanilla deep & hierarchical LSTM with “universal” setup
Gain clearly correlated with amount of training data (1k -
68k sentences), word2vec helps to bridge gap

Robust against char flips

Next step: Will tag the “German Corpus” (27 billion words)



