LEXIDB: A SCALABLE CORPUS DATABASE MANAGEMENT SYSTEM

MATTHEW COOLE, PAUL RAYSON, JOHN MARIANI
BACKGROUND

Corpora have grown from millions to billions of words in recent years.

Brown Corpus (1961) ~1 million words
BNC (1994) ~100 million words
Historical Hansard (2005) ~1.68 billion words
EEBO-TCP ~4 billion words

Simple tool and concordancers e.g. AntConc, Wmatrix etc. cannot handle this scale.
LEXIDB

Lightweight distributed corpus DBMS.

Supports 4 query types;
 Concordance Lines
 Collocations
 Clusters (N-Grams)
 Word lists

Supports corpora in the range of ~billions of words.

Token level annotations supported.
LEXIDB ARCHITECTURE

All nodes in network utilised as peers.

Data split into regions to allow easy migration and data balancing.

Uses a column-family store designed for zipfian data.

Full text index of both text and annotation to support regular expressions.
DEMO
BENCHMARK SETUP

2 corpora

- Historical Hansard (1.68 billion words)
- EEBO-TCP Phase 1 (0.91 billion words)

AWS test system (8 vCPUs, 30GB RAM, 2 x 80GB SSD) – 1, 2 & 4 node configurations
BENCHMARKS RESULTS

Fig. 3. Insertion and Indexing

Fig. 4. Concordance Lines
- EEBO (1 node)
- EEBO (2 nodes)
- EEBO (4 nodes)
- Hansard (1 node)
- Hansard (2 nodes)
- Hansard (4 nodes)
BENCHMARKS RESULTS (2)

Fig. 5. Collocations

Fig. 6. Clusters (n-grams)
BENCHMARK RESULTS (3)

Fig. 7. Frequency List
FUTURE WORK

- Chord (DHT) for more robust scalability.
- Support for further column families to support metadata.
- Query language extension to move towards a simplified CQL.
ACKNOWLEDGEMENTS

Research funded by EPSRC doctoral training grant.

Corpus Data Project (CDP) – Laurence Anthony, Stephen Wattam, John Vidler.

Code available at; https://github.com/matthewcoole/lexidb