

LEXIDB: A SCALABLE CORPUS DATABASE MANAGEMENT SYSTEM

MATTHEW COOLE, PAUL RAYSON, JOHN MARIANI

BACKGROUND

Corpora have grown from millions to billions of words in recent years.

Brown Corpus (1961) ~1 million words

BNC (1994) ~100 million words

Historical Hansard (2005) ~1.68 billion words

EEBO-TCP ~4 billion words

Simple tool and concordancers e.g. AntConc, Wmatrix etc. cannot handle this scale.

LEXIDB

Lightweight distributed corpus DBMS.

Supports 4 query types; Concordance Lines Collocations Clusters (N-Grams) Word lists

Supports corpora in the range of ~billions of words.

Token level annotations supported.

LEXIDB ARCHITECTURE

All nodes in network utilised as peers.

Data split into regions to allow easy migration and data balancing.

Uses a column-family store designed for zipfian data.

Full text index of both text and annotation to support regular expressions.

BENCHMARK SETUP

2 corpora

Historical Hansard (1.68 billion words)

EEBO-TCP Phase 1 (0.91 billion words)

AWS test system (8 vCPUs, 30GB RAM, 2 x 80GB SSD) – 1,2 & 4 node configurations

BENCHMARKS RESULTS

Fig. 3. Insertion and Indexing

BENCHMARKS RESULTS (2)

BENCHMARK RESULTS (3)

Fig. 7. Frequency List

FUTURE WORK

Chord (DHT) for more robust scalability.

Support for further column families to support metadata.

Query language extension to move towards a simplified CQL.

ACKNOWLEDGEMENTS

Research funded by EPSRC doctoral training grant.

Corpus Data Project (CDP) – Laurence Anthony, Stephen Wattam, John Vidler.

Code available at; https://github.com/matthewcoole/lexidb