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Abstract  

This paper introduces and evaluates a Bayesian Network probabilistic model for automatic Part-Of-Speech 
tagging of Modern Greek natural language texts. The Bayesian model for the task of POS tagging is 
mathematically formed and is compared to that of Hidden Markov, a broadly applied methodology. Our model is 
trained from annotated corpora, using lexical as well as contextual information. Unlike the majority of existing 
taggers, it uses minimal linguistic resources, namely a small lexicon which contains the words that belong to 
non-declinable POS categories and closed-class words. Furthermore, the model is augmented to infer on the case 
of an unseen word as well. Experimental results depict accuracy in the range of 91%-96% for POS and a range of 
93%-97% for case tagging. 
 

Introduction 

A significant number of natural language processing tasks exploit the key role of lexical corpora resources, 
particularly annotated corpora. Due to the fact that manual construction of such corpora is a laborious procedure, 
developing automated tools that will assign accurate tags to previously unseen words is of paramount 
importance. Under the perspective of real world applications, the acceptance of such taggers is originated on the 
ability to cope with unknown words, on self-improvement by training and on being able to minimize the tagging 
error rate. 

The majority of the existing systems that have been presented for Part-Of-Speech (POS) labelling utilize 
either rules or stochastic approaches. Rule-based ones (Brill 1992, 1994, Elenious 1990, Vontilainen et al. 1992) 
use handcrafted linguistic knowledge of language or application-dependent POS constraints. Significant tagging 
accuracy is reported when using a restricted POS set. Marcus et al. (1993) referred to a value of 94%-98% in 
accuracy on the Penn Treebank corpus. However, when applied to large POS sets or voluminous training data, 
the number of learned rules increases dramatically, resulting in a highly costly rule definition. For example, 
Petasis et al. (1999) observed that the number of learned rules is linearly increasing with the corpus size. 

Stochastic taggers use morphological as well as contextual information and obtain their model parameters by 
applying statistical algorithms to labelled text (Cerf-Danon and El Beze 1991, Church 1988, Kupiec 1992, 
Wothke et al. 1993, Merialdo 1994, Dermatas and Kokkinakis 1995). When a plethora of data is available, the 
performance is close to that of rule-based systems. Nevertheless, there are cases where the theoretical 
background of such taggers imposes restrictions and assumptions that are not met in real case natural language 
problems. Dermatas and Kokkinakis (1995) describe a HMM POS tagger, which is based on the assumption that 
each word is uncorrelated with neighbouring words and their tags, a claim which is not necessarily valid in 
natural language texts. In recent years, there has been a shift from treating POS taggers as a model of the 
sequence structure of sentences to consider them as classifiers. Ratnaparkhi (1996) presented a maximum 
entropy model for POS tagging. The context can be represented in terms of a rich set of features (e.g. 
surrounding words, tags and word-form features such as suffixes or prefixes). The construal of the POS tagging 
task as such a classification problem allows one to use a plethora of machine learning algorithms. 

For the present paper, a novel, Bayesian Belief Network (BBN) POS tagger is presented and evaluated for 
Modern Greek (MG), a language with a high degree of POS ambiguity. The construction and evaluation 
resources consist of two different corpora of newspaper balanced genre articles consisting of approximately 



120,000 and 250,000 words each. This material was assembled in the framework of the 
ILSP/ELEYTHEROTYPIA1 and the ESPRIT(291-860) projects. The tagger uses minimal linguistic resources, 
namely a small lexicon of only 400 entries, containing the words that belong to non-declinable POS categories 
and closed-class words. It exploits both lexical and contextual information without performing morphological 
analysis. This results in an adjustable module that could be applied to new languages or new feature sets with 
trivial effort. Furthermore, an additional case tagging model has been constructed using BBN. Experimental 
results indicate a POS tagging accuracy in the range of 91%-96% and a range of 93%-97% in case tagging. The 
inference of the case is performed given the POS tagger’s predicted POS rather than having it extracted from the 
test data set. 
The structure of this paper is as follows: In Section 1, the Bayesian stochastic tagging model is presented and 
theoretically evaluated against that of HMM. In Section 2 the morphological properties of MG and the target 
language resources are discussed, plus a detailed analysis on the influence of known and unknown words in the 
process of training the model. In Section 3 a short presentation of the implementation is mustered, followed by a 
detailed description of the experimental results in Section 4. The concluding remarks are discussed in Section 5. 
 

1. The probability model 

Researchers that focus on the stochastic modelling of POS disambiguation, define the stochastic model over 
H*T, where H is the set of possible lexical and labelling contexts {h1,…,hk} or “variables” and T is the set of 
allowable POS labels {t1,…,tn}. Using Bayes’ rule, the probability of the optimal tag Topt equals to: 
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Approximations of the probability distributions of (1) deal with the trade-off between computational 

complexity and efficiency. For a given sequence of observations of variables h1,…,hk, equation (1) becomes: 
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The HMM-based taggers assume that each hi is uncorrelated with the other variables and their corresponding 
labels, and each label ti is probabilistically related to the k previous labels only. Therefore, equation (2) is altered 
to: 
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However, as mentioned before, this assumption barely holds true in real natural language texts. Bayesian 
networks are capable of effectively coping with the non realistic HMM restriction, since they allow stating 
conditional independence assumptions that apply to variables or subsets of variables. In general, a BBN 
represents this knowledge as a directed acyclic graph with nodes corresponding to variables and arcs depicting 
their interconnection. A BBN also encodes the degree of the dependencies among variables in terms of 
probabilities in an embodied conditional probability table. The joint probability of any assignment of values 
<a1,…,an> to the tuple of network variables <A1,…An> is given by the formula: 
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1http://www.elda.fr/cata/text/W0022.html 



where denotes the set of immediate predecessors of the variable A( )iParents A

( )i

i in the network. This set is 
comprised of all the variables that directly affect the conditional distribution of Ai. The values of probability 

( | )ip a Parents A  are precisely kept in the conditional probability table. Given equation (4), equation (2) 
becomes: 
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Note that in formula (3) the most probable tag sequence was computed based on the N-gram approach solely, 
meaning that it assumed that only the n-1 words have an effect on the probabilities of the next word n. On the 
other hand, Bayesian networks allow taking under consideration words (or “features” in general) that could be 
situated after the word whose tag is to be inferred besides the n-1 previous ones. 
The estimation of probabilities in formula (5) is straightforward, provided that we know the interconnection of 
our data features i.e. the structure of the Bayesian network. In our case, provided that the tagger should be fully 
automated and free of linguistic handcrafted knowledge, this network structure was not known in advance. Thus, 
a search algorithm that would learn it from the observable data should be applied. Since the problem of learning 

networks from data is known to be NP-hard (Mitchell 1996) (i.e. there are 2
)1(

2
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 possible networks that could 
describe n different variables), we used a modification of the Cooper and Herskovits (1992) heuristic search 
algorithm K2. Instead of comparing all candidate networks, we consider investigating among the set of those that 
resemble the current best network most. A detailed description of the search process is included in Section 3, 
where the implementation issues are presented. 

2.  Resources and task complexity 

The Greek language has a complex inflectional system. There are eleven different POS categories: articles, 
nouns, adjectives, pronouns, verbs (a participle is considered a sub-category of a verb), numerals, adverbs, 
prepositions, conjunctions, interjections and particles. The first six (articles, nouns, adjectives, pronouns, verbs 
and numerals) are declinable; the remaining five (adverbs, prepositions, conjunctions, interjections and particles) 
are indeclinable. Moreover, all indeclinable words plus articles and pronouns form closed sets of words (meaning 
that they are limited to a few dozens and no new words are added to these classes) while nouns, adjectives, and 
verbs form open sets (i.e. their number is practically unlimited, since new words are added to these classes as the 
language evolves over time). 

The case attribute characterizes nouns, adjectives, numerals and participles. Its possible values are: 
nominative, genitive, accusative and vocative. Although the dative case was extensively used in Ancient Greek, 
it appears in MG texts only within archaized expressions.  

2.1 Corpora 

The POS tagger was constructed and thoroughly evaluated using two different corpora of balanced genre 
newspaper articles. The former is the ILSP/ELEFTHEROTYPIA corpus, consisting of 250.000 morphologically 
annotated texts by experienced linguists. The latter is the ESPRIT(291-860) Greek corpus of about 120.000 
words, morphologically annotated using semi-automatic tagging tools.  

An analysis on the distribution of POS tags in the two corpora revealed that despite the fact that they have 
been annotated using different methods and that they contain different texts, the POS categories of the containing 
words present approximately the same distribution (Figure 1). This observation contributes significantly to the 
process of choosing among the training and test data sets, since it indicates that there is no evidence that the 
model parameters of the trained model will not represent the test set. 
 



 
Figure 1: Distribution of the grammatical classes of words for both types of Modern Greek corpora. 

 

2.1.1 POS/Case corpus ambiguity 
Table 1 tabulates the POS label set which includes common categorization of the grammatical information for 
the two corpora.  

Pos category POS-specific 
features 

Common
features 

Adjective (ADJ) Degree 
Noun (N) Common/proper 

Pronoun (PN) 
Personal/relative,

interrogative, 
person 

Participle (V) Sub-category of 
verb 

Article (ART) Definite/indefinite 
Numeral (NUM) Ordinal/cardinal 

Gender 
Number 

Case 

Verb (V) Voice, mood, person, number 
Conjunction 
(CON) Coordinating/subordinating 

Particle (PAR) Of negation, of future, 
subjunctive 

Preposition(PR
E)  

Adverb (ADV)  
Interjection 
(INT)  

Residuals (RES) Acronym/abbreviation/foreign 
word 

Table 1: The considered set of grammatical features. 
 

POS ambiguity relies mainly on the fact that certain adjectives and adverbs share the same orthographic 
form. The same holds for articles and some particular pronouns. As an example: 
“Ήπιε πολύ” (He drank a lot) and 
“Ήπιε πολύ κρασί” (He drank a lot of wine). In the first case, the word “πολύ” (a lot) is an adverb, while in the 
second example “πολύ” is an adjective. The POS corpus ambiguity was calculated by the mean number of 
possible tags for each word for the whole set of grammatical features. Taking into account that the POS feature 
set of the training set and that of the test set would be identical, the ambiguity of a 10,000 words test set was 
computed for a 50,000 words training corpus (Table 2).  



In MG, case ambiguity relies on the fact that in many cases, declinable words have the same orthographic 
form in the nominative as well as in the accusative case. This applies for almost all nouns, adjectives, articles, 
pronouns and ordinal numerals, feminine and neutral, singular and plural. Consider the following example: 
“Ακούει το παιδί” (The child is listening) and “Ακούει το παιδί” (Someone is listening to the child). In the first 
example the noun phrase “το παιδί” (the child) is in the nominative case (subject), while, in the second, it is in 
the accusative (object).  
 

Corpus 
Ambiguity ILSP ESPRIT 

POS 1.789 1.855 

Case 1.673 1.7 
Table 2: Corpus ambiguity in terms of POS/Case tags for both corpora. 

 
Taking into account the results of Table2, it is worth noting that the task of correctly identifying the POS and 
case label of a word is particularly difficult for MG due to the great number of duplicate tags each word might 
have. Furthermore, since we do not incorporate a large known words lexicon, the ambiguity is further increased. 

2.2 Coping with unseen words 

We do not distinguish between known and unknown words in the corpus. For all methods adopting the above 
distinction, their model uses the set of known words for training and the unknown ones for testing. However, 
according to Dermatas and Kokkinakis (1995), the POS distribution of known words differs significantly from 
that of unknown words for seven European languages, including MG. Therefore, there is a great possibility that 
the known-word-based training model includes parameters that do not reflect the test set parameter distribution 
accurately. Moreover, using known words as training resources poses another, machine-learning complication. 
The trained model forces its feature expectations to match with those observed in the training data, resulting in a 
model that tends to perfectly classify the instances of the training set. While this seems like a reasonable strategy, 
it potentially leads to “overfit” the data, and is therefore not able to accurately classify a word that did not appear 
in the training set. This occurs when there is noise in the data or in case the features are somewhat insignificant 
to the target classification function. In the POS domain, where the POS ambiguity is particularly high, training a 
system using known words as features could lead to a very accurate classifier if these words appear in the test 
set, but to a very poor performance in case many unseen terms are found within the instances. In our approach, 
we consider as lexical resources only words that belong to non-declinable POS categories and closed-class words 
(like articles, pronouns, etc.) and a short, 150 entries list of suffixes of MG words, which do not expose such 
anomalies in the distribution of their grammatical properties. However, using BBN for training, poses a 
restriction. When the conditional probability table of the model is calculated from a limited amount of training 
data, a large number of tagging errors is observed, due to inaccurate estimation of conditional probabilities. 
Researchers that conducted POS labelling experiments on MG (Dermatas and Kokkinakis 1995, Petasis et al. 
1999, Orphanos et al. 1999), report “baseline” results obtained from a 20,000-word training set. The BBN POS 
tagger needed about 30,000 words in order to reach the same level of performance. Nevertheless, this is 
essentially disadvantageous for languages with limited available annotated texts. MG and the majority of 
European Languages have a plethora of existing annotated large corpora, so the threshold of 30,000 words could 
be put across. 
 

3. Implementation 

As described in Section 1, the Bayesian model hypothesis space is defined over H*T, where H contains the 
complete set of lexical and contextual features that were considered, while T denotes the target values for the 
POS or case classification. For the task of POS tagging, T contains the 12 different categories found in Table 1. 
Concerning the case tagger, 6 different values were taken into account: accusative, nominative, genitive, dative, 
vocative and a null value to denote that the word does not contain any case. As regards to the feature selection, 
contextual and lexical information was integrated. A small lexicon of 400 words belonging to the group of non-
declinable POS categories and closed-class words was maintained, plus a list of all suffixes of MG language 



(around 150 different unambiguous suffixes). Furthermore, morphological features were included such as the 
gender, number and case of a word. 

Unlike most previous approaches that attempted to estimate the optimal POS tag of a word by inducing 
inference based on the N-1 previous ones, a flexible-sized window of {N-1,N+1} words was utilized. The N-1 
words incorporated all the lexical and morphological features while the N+1 words and the current one were 
only tagged according to their suffixes and their presence in the 400 items lexicon. The parsing of the training 
corpus resulted in a bi-dimensional table D=I*J where each row corresponds to the pair of word-selected 
window and each column indicates each feature of that pair plus the POS and case category of the word whose 
POS and case should be learned. 

In the process of determining the most probable network structure from data, prior knowledge of the impact 
each feature poses to the POS class was intentionally not given to the model. The aim of the proposed tagger is to 
automatically determine the inter-relation between feature nodes and the class node, hence not be a language 
dependent model. The parameter needed for evaluating two candidate networks is their probability ratio over the 
set of training examples. If we denote r as the relation of two networks B1 and B2 respectively, then using Bayes’ 
theorem: 
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Having not seen the data, no prior knowledge is obtainable and thus no straightforward method for computing 
probabilities P(B1) and P(B2) of equation (8) is feasible. A common way to deal with this, is to assume that all 
networks has the same probability, so equation (8) becomes:  
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The columns of D correspond with the nodes of the BBN, and the degree of each node’s influence to the 

other was determined using data from the rows of D. The probability of each candidate network B given table D 
was computed using the formula of Glymour and Cooper (1992): 
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where: 

• Γ is the gamma function. 
• N equals to the number of variables. 
• ri denotes the number of values in i:th variable and qi denotes the number of possible different data value 

combinations the parent variables can take. 
• Nij depicts the number of rows in data that have j:th data value combinations for parents of i:th variable. Nijk 

corresponds to the number of rows that have k:th value for the i:th variable and which also have j:th data 
value combinations for parents of i:th variable. 

• Ξ is the equivalent sample size, equals to the average number of values variables have, divided by 2. 



Since, as the number of nodes increases (the window size is expanded), the population of possible networks 
becomes cumbersome, a search strategy had to be followed: Initially, the most probable forest-structured 
network is constructed (i.e. a network in which every node has at most one parent). A greedy search is performed 
by adding, deleting or reversing the arcs randomly. In case that a change results in a more probable network, it is 
accepted, otherwise cancelled. Throughout this process, a repository of networks with high probability is 
maintained. When the search reaches a local maximum, a network is randomly selected from the repository and 
the search process is activated again. It should be noted that in order to avoid the convergence to the previous 
local maximum the network is slightly modified, meaning that we delete some arcs. Since the training data set is 
large we also sub-sample the data to speed the network evaluation process up. During the search, the size of the 
sub-samples is increased. A restriction on the network complexity is also applied during the search, so that a 
limited number of arcs is allowed in the beginning and, as the process progresses, more and more arcs are 
approved. These two annealing schemes (sub-sampling and complexity restrictions) have proven to have the 
effect of avoiding many bad local maxima. 
 

4. Experimental Results 

In order to conduct POS and case tagging experiments, each of the MG corpora has been partitioned into equal 
parts of 10,000 words. The 90% of those parts have been used for training material while the remaining 10% 
have comprised the testing set. This process has been repeated 10 times, using different parts of the text for 
training and evaluation each time. The performance has been measured by the average accuracy over the 10 
repetitions. The POS tagger accuracy has been calculated as the number of correctly classified POS labels by the 
number of words within the open test set. The case tagger accuracy has been measured by counting the number 
of correctly classified cases, again divided by the number of words found in the test set. It is important to stress 
that the case tagger infers about the case of a word taking the POS tagger estimation on the POS of that word into 
account, in order for the tagger to be applicable on raw corpora. Nevertheless, the module is parametric 
concerning this factor, so the user could decide whether the POS information will be available or it should be 
inferred from the POS tagger. 
During the evaluation process, the best window size in terms of efficiency versus computational complexity was 
found to be {-3,+1}. The computational time of the Bayesian network learning phase is O(N2), where N is the 
number of linguistic features for a given pair of  word-window. The confusion matrices, obtained using the best 
window, of both POS and case tagging for each corpus are tabulated in Tables 3 and 4. An additional metric of 
% Per Class Accuracy (%PCA) is presented in order to provide a clearer view of each tagger’s potential 
classification weaknesses. %PCA is the percentage of the correctly labelled tags divided by the number of 
instances of that class found in the testing words collection. Figure 2 illustrates the progress of POS and case 
error rate using different sizes of training data. The immediate improvement of the model using 30,000 training 
words could be observed. This supports the theoretical claim that more training data is needed by the BBN 
approach than by the other stochastic or rule-based approaches. 
 

  
Figure 2: Percentage of POS and case error rate in the test set of 10,000 words for fluctuant training text 



 
 

ILSP Total Accuracy: 96.9% 
CASE accusative dative genitive nominative none vocative %PCA 

accusative 5464 - 47 534 - - 90.4% 
dative - 7 - - - - 100% 

genitive 27 - 3238 21 - - 98.5% 
nominative 279 - 26 3755 - - 92.5% 

none - - - - 11597 - 100% 
vocative - - - - - 4 100 % 

ESPRIT Total Accuracy: 93.4% 
CASE accusative dative genitive nominative none vocative %PCA 

accusative 2744 - 24 286 43 - 88.6% 
dative - 4 - - - - 100% 

genitive 28 - 1588 37 31 - 94.3% 
nominative 158 - 21 1850 49 - 89% 

none 54 - 23 58 5799 - 97.7% 
vocative - - - - - 2 100% 

Table 3: Confusion matrix of the case tagger for both corpora.  
 

As can be observed from Table 3, the high degree of ambiguity regarding the nominative and accusative case is 
the only reason case tagging accuracy drops below 95%. Because of the fact that the most declination categories 
nouns, adjectives and numerals share common suffixes, POS tagging accuracy for adjectives and numerals 
reaches 75% and 82.5% respectively (numerals are a more restricted group of words than adjectives, which 
explains the higher accuracy). Nouns, on the other hand, usually follow adjectives within a noun phrase. 
Therefore, POS information of the previous word helps increase noun POS tagging accuracy to over 90%. For 
the rest of POS categories, accuracy does not fall below 97%. The decrease in accuracy in ESPRIT could be 
attributed to the basically automatic annotation of the corpus. 
 

ILSP Total Accuracy: 96%
POS ADJ CON INT NUM N PN ADV PRE ART PAR V RES %PCA
ADJ 1575 - - 10 533 - - - - - - - 74.4%
CON - 1977 2 - - - - - - - - - 99.9%
INT - - 7 - - - - - - - - - 100%

NUM 19 - - 548 99 - - - - - - - 82.3%
N 299 - - 35 6067 - - - - - - - 94.8%

PN - - - - - 1497 - - - - - - 100%
ADV - - - - - - 1325 - - - - 41 97%
PRE - - - - - - - 2239 - - - - 100%
ART - - - - - - - - 4142 - - - 100%
PAR - 1 1 - - - - - - 530 - - 99.7%

V - - - - - - - - - - 3169 - 100%
RES - - - - - - 28 - - - - 855 96.8%
ESPRIT Total Accuracy: 91.9%
POS ADJ CON INT NUM N PN ADV PRE ART PAR V RES %PCA
ADJ 699 - - 11 371 - - - - - - - 64.7%
CON - 1003 13 - - - - - - - - - 98.7%
INT - - 3 - - - - - - - - - 100%

NUM 10 - - 281 51 - - - - - - - 82.4%
N 153 - - 181 2989 - - - - - - - 89.9%

PN - - - - - 766 - - - - - - 100%
ADV - - - - - - 676 - - - - 21 96.9%



PRE - - - - - - - 1146 - - - - 100%
ART - - - - 25 - - - 2087 - - - 98.8%
PAR - 20 6 - - - - - - 258 - - 90.8%

V - - - - - - - - - - 1623 - 100%
RES - - - - - - 54 - - - - 353 86.7%

Table 4: Confusion matrix of the POS tagger for both corpora. 
 

Conclusion 

The Bayesian network model is a flexible technique for linguistic modelling, since it can exploit a rich linguistic 
feature set in the framework of a probability model. The strict assumption of the HMM stochastic models 
concerning the N-1 previous words influence, which is not always encountered in real natural language 
problems, has been successfully alleviated using the Bayesian model, by allowing taking N+1 words into 
account as well. In this paper, an implementation of this model resulted in a state-of-the-art POS and case tagger, 
as evidenced by the 96% and 97% accuracy respectively, shown in Tables 3 and 4. 

The taggers have been evaluated in two MG newspaper corpora, annotated with different methodologies, 
using a rich grammatical tag set (12 categories for POS and 6 for case tagging). Minimal linguistic knowledge 
has been incorporated in order to avoid using a wide coverage lexicon of known words that could potentially 
produce a model that would overfit the data, thus performing poor when confronting with unknown terms. 

Furthermore, the model parameters are adjusted when new training data is entered, resulting in accuracy 
improvement, as was expected. 
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