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1. Introduction 

At the Department of Linguistics in Gothenburg, a research group led by Jens Allwood has been working 
with spontaneous spoken language since the late 70's. The authors of this paper are currently a part of this 
group. We think that it is important to be aware that spoken language is different from written language, 
and that methods and theories developed for written language are not necessarily suited for spoken langu-
age. For a description of the differences between spoken and written language, see e.g. (Allwood 1996). 

That words can be divided into groups is a fairly natural idea for anybody who has studied language, and 
indeed the concept of parts-of-speech goes as far back as the study of language does. But exactly which 
groups should be used and what their basis should be, is still an unresolved issue. It would be a great 
advantage if one could find theory-neutral groups of words, which could be used to inspire and verify 
theories about parts-of-speech. In this paper we try to find similarities between words, and thus to find 
word groups, in spoken language without using traditional written language theories about grammar and 
parts-of-speech. Instead we want to induce information directly from our corpus1 and then evaluate what 
we have found. We are not aiming at creating general tools for automatic parts-of-speech tagging or 
semantic clustering or the like. 

It should be noted that the grouping of syllables/phonemes into words is not unproblematic, and that our 
work in this aspect relies on the transcribers' intuition, which can be expected to be heavily influenced by 
written language. However, we consider that a different problem. 

The idea for this paper was born during a collaborative project between the Danish researcher Peter Juel 
Henrichsen and the research group in Gothenburg, working with the GSLC (Göteborg Spoken Language 
Corpus) (Allwood et al 2001) and the BySoc corpus (Henrichsen 1997), (Gregersen 1991). As a part of the 
project we made a variety of comparisons between Swedish and Danish. One of Henrichsen's contributions 
was a context based measure of similarity between words in a corpus. The context window is extremely 
small – namely 1+1 word – one to the left and one to the right. The measure is based on the number of 
mutual context words, and words with a high similarity score are called siblings (Henrichsen 2003). If two 
words have exactly the same relative distribution of context words, both to the left and to the right, the 
similarity will be 1.0, and if the words do not have any context words in common it will be 0.0. 

2. Constructing a new iterative word clustering algorithm 

2.1 Using the sibling measure to find word clusters 

Henrichsen's purpose with the sibling measure was to find the most similar pairs of words. Quite obviously, 
in many cases several words will be rather similar, while only two of them will be the closest pair. One way 
of finding word clusters could be to define a threshold Thrscore, and to say that if word A resembles word B 
more than Thrscore, then A and B belong to the same cluster. What is more, since the sibling measure is 
asymmetrical, 'sibling chains' may occur, where A resembles B, B resembles C, C resembles D etc. This 
will also help to form clusters. 

There are several problems with this approach. Firstly, there is no way of adding more words to the clusters 
afterwards. Either the words resemble each other enough to pass the threshold, or they do not. In practice, 
that would mean that the word clusters would not have more than 10-20 members, at most. Secondly, the 
'sibling chains' may cause some problems, since there is no obvious way of stopping them – if we are 
unlucky, the chains can go on until far too many words are included. An example could be homonyms like 
the Swedish var (either a verb, was/were, or an adverb, where): the word är (am/is/are) might very well 

                                                           
1the Göteborg Spoken Language Corpus (GSLC), (Allwood et al 2001) 

 265



resemble the verb var, but then var as an adverb may resemble hur (how). 

In order to get around these problems, we used another approach, consisting of two steps – first we made 
the sibling measure, here called sib, symmetrical, so that 

 
and then we collected clusters iteratively, i.e. after the first run the most similar words were replaced
the set of words representing their new found word cluster, and then we again looked for similarities
if gå (go/goes) and gick (went) resembled each-other after the first run, then each occurrence of gå a
were replaced by gå-or-gick, and then we looked for similarities again. This has several positive effe

1. The clusters can be extended successively.  

2. The risk of 'sibling chains' is much smaller. 

3. Sub clusters fall out naturally, since the most similar words will be discovered first.  

 

2.2 Adjustments in the sibling measure 

Apart from the advantage with the symmetry property above in avoiding 'sibling chains', there is an 
intuitive appeal in having a similarity measure symmetric. One straightforward way to obtain this is 
the average of sib(w1,w2) and sib(w2,w1), see formula (3). 

 
We also noticed that the sibling measure would become very low if one of the sums in the formula w
low. Two words with an identical left context distribution and totally different right contexts will ge
small sibling value. We did not like this, so we changed the multiplication between the sums to addi
and also divided the measure by 2 to keep the range [0,1]. With these changes, the resulting definitio
the adjusted measure, called ggsib, will be: 

 

The formula looks more complicated than it is, so we will take a look at an example to give an intuit
idea of how it works. Consider w1=han (he) and w2=hon (she). Now, formula (3) will give: 

 
Formula (4) tells us to add over all the words that occur immediately to the left and right respectivel
the words han and han. For example, one word occurring to the right is har (has). The frequency for
har is 394 and for hon har 242, but han is more common than hon (5269 and 2155 occurrences each
tells us that the share of all han with har to the right is 7.4% and for hon it is 11.2%.  

These relative frequencies fit well into in formula (4). For w1=han, w2=hon and w=har, we have: 

For identical relative frequencies, this will be 1, so each sum will result in a number between 0 and f
thus ∀ w1,w2 : 0 ≤ sib(w1,w2)≤ 1 , with the value 1 if all relative frequencies are identical. For hon an
the differences in relative frequencies for the most common context words are shown in table 1. 
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Table 1: Relative frequencies for the most common context words for hon and han. 

 Bigram Value (6) Rel. Freqhan-bigram Rel. Freqhon-bigram  
att w1 89% 8.5% 10.7% 
och w1 98% 4.8% 4.6% 
men w1 99% 3.3% 3.3% 
som w1 81% 3.1% 2.1% 
har w1 92% 3.0% 2.5% 
när w1 97% 2.9% 2.7% 
ja w1 87% 2.7% 3.6% 
är w1 92% 2.4% 2.9% 
så w1 95% 2.4% 2.6% 
om w1 94% 2.4% 2.1% 
det w1 91% 2.2% 2.6% 
sade w1 98% 2.0% 1.9% 
w1 har 80% 7.5% 11.2% 
w1 är 80% 7.4% 11.2% 
w1 var 96% 4.6% 4.2% 
w1 hade 85% 3.7% 2.7% 
w1 inte 90% 2.7% 3.3% 
w1 eh 81% 1.9% 1.3% 
...    

 

We can see that the relative frequencies for the most common words around han and hon are very similar, 
which will result in a high ggsib-value. 

 

2.3 Iterative use of ggsib 

What we did in the iterative version of our experiments was the following:  

1. We ran ggsib between all pairs of words with a raw frequency above a threshold Thrfreq. This gives 
a lot of similarity numbers between words. 

2. We took the pairs with a score above a rather high score threshold Thrscore. Now we have a list l of 
pairs of rather similar words. 

3. For each pair in l, we replaced the most low-frequent word with the other one in the pair. 

4. If l is empty the Thrscore was slightly decremented. 

5. We ran from the beginning again with the modified corpus until Thrscore goes below a limit.  
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With this method words with not so similar contexts will get  more similar contexts after a while, and this 
will result in clusters of words. Within the cluster one could identify a structure because some of the words 
are put together early in the process and some later on. For example some of the pronouns are clustered like 
this: 

 
 

Figure 1: Cluster of some pronouns, showing the successive clustering. 

 

The integers in the leaves are word frequencies and the numbers in the nodes are ggsib scores. We can see 
that the strongest similarity in this tree is between han and hon. These trees are always constructed bottom 
up, so du and ni form a small tree which is put together with jag and then the man-or-vi sub tree is added, 
and so on. 

3. Implementation 

The implementation of ggsib could be done quite easily, using for example Perl. For each word pair we just 
have to loop through all left- and right context words, and calculate the sums. But this will take a lot of 
time. 

 

3.1 Time and space consumption 

The problem arises when running this on a big corpus with a reasonable Thrfreq. In the GSLC there are 5828 
word types with a frequency at of least 10, giving roughly 17 million word pairs to feed into the ggsib-
function. For all these word pairs we will have to look up the frequency for all their context words. We do 
some slight hand manoeuvres to get rid of a substantial part of these lookups, but during the run we still 
look up roughly 218 million word-pairs in the lexicon. What we did was to speed up the lexicon lookup by 
using trees with arrays of letters in each node. This consumes a lot of memory, but the time is constant2 to 
the corpus size. The complexity is still high, but in practice the example above takes less than an hour with 
a C-implementation3, compared to four days with the Perl-script, using a hash table implementation of 
associative arrays. Maybe four days is not that bad either, but when running the iterative version our 
experiments would take almost a year to run. 

 

 

                                                           
2In fact it is linear to the average length of the words, but this will not change when the corpus grows. 
3All time measurements are made on a SUN Enterprise 450 with 3 UltraSparc 300 MHz processors, running Solaris. 
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3.2 Time complexity 

The theoretical worst-case time complexity is difficult to calculate, but if we assume that the Guiraud4 
value for a growing corpus is constant, it follows that Types ∝ �Tokens when the corpus grows. It also 
holds that Typesfreq>Const ∝ Types. The outer loops result in Types2 laps, the loop in the sums will look up 
Tokens/Types ∝ Types words, and if the look-up takes O(log Types), we will get a time complexity of 
O(Types3 Log(Types)) which is equivalent to O(Tokens1.5 Log(Tokens)). 

 

3.3 Corpus details 

We also had to think about utterance boundaries. After some tests we decided to insert a special utterance 
boundary word, udl, to avoid problems with utterance order and overlaps. Now, with the context window 
size of 1+1, each utterance is separated. This is the major reason to use this small context window size. We 
also had to decide how to handle sections of inaudible speech, and we simply decided to treat them as 
negligible in the calculation (we also removed the pauses). 

 

4. Evaluation  

The words are clustered the way they are only as a consequence to their distribution in our corpus. Figures 
2 and 3 show examples of what the resulting clusters look like.  

In some cases the resulting sets have a very clear semantic relation, as in the trees in figure 2: 

 

 
 

Figure 2: Two clusters with strong semantic coherence5. 

 

In some cases words with low frequencies are clustered in a semantically unexpected way, as in figure 3 
(this will also happen if the score threshold is set low). 

                                                           
4Pierre Guiraud's widely used measure of vocabulary richness:                                   (Broeder et al 1993). Tokens

Guiraud =
Types

5The meanings of the words hem, hit and dit includes movemen
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t; to home/here/there. 



 
Figure 3: Cluster of rare words, with weaker semantic coherence. 

 

Still, we see that all the words in this tree are countable nouns of common gender and indefinite form. Not 
even adjectives have managed to interfere. 

Running the algorithm on a corpus in which pronunciation variants of the words have been transcribed, e.g. 
talade and tala{de} (spoke), where the curly brackets show reduced phonemes, these words are clustered 
first. Since this is what should be expected from a clustering method of our type, it is evidence of the 
validity of the method.  

The tree with the strongest similarities is the one containing typical feedback words6. This can be explained 
by their typical occurrence as complete utterances, surrounded by the utterance delimiter (see 3.3 above). 

We do not know of any acknowledged standard for evaluating word-clustering algorithms, and so it is 
difficult to see how our clustering would compare to other efforts.  

The main problem with evaluating clustering is that it is not obvious what a correct result would look like. 
We have not defined an a priori taxonomy of words, but rather the result of the clustering is our taxonomy, 
and thus it is 100% correct7. But it is not entirely correct to say that we have no a priori taxonomy – our 
language intuition tells us that e.g. he and she should be clustered together earlier than to and refrigerator. 
That way it is possible to see some of the limitations of our algorithm, and the most obvious one is, as 
always, related to sparse data: for rare words, the clustering is not all that intuitive. E.g. godafton (good 
evening) and ojdå (oops), with 10 and 14 occurrences respectively, are joined in the very first phase. A 
plausible explanation to the clustering is that both words typically occur as one-word utterances, but our 
intuition tells us that they are not all that similar. 

                                                           
6Note that the algorithm works on categorematic as well as syncategorematic words (content and function words). The 
only requirement is that the frequencies are high enough. 
7See section 5 for a discussion about what the clusters really are. 
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Another limitation of the algorithm is that homonyms, like var (was/were) and var (where) are not 
disambiguated, and that they cause certain 'confusion' in the clustering. In the case of var, it is more 
common as a verb, and so it is clustered with other verbs. In the next iteration, the adverbial use of the 
cluster containing var is even more rare, since the cluster includes other verbs, and thus the adverbial use of 
var disappears. 

Despite these problems, the clustering is surprisingly good – even rare words are often clustered very well. 
E.g. the name coronado/13 is clustered with silverado/12 (the number after the slash indicates the number 
of occurrences); reglera/15 (regulate, control) is clustered with tämja/23 (tame, domesticate), and fjol/13 
(last year) with somras/16 (last summer). 

Comparing the results with the results presented in the article (Brown et al 1990), the clusters generated by 
our algorithm are at least as intuitive as the ones that Brown and his colleagues found. However, it would 
be interesting to do a more detailed comparison than what we could do from the Brown article only. 

5. Intensional interpretation of the clustering  

As mentioned in section 4 above, we have no underlying theory about which word clusters should be 
found, but the entire study would be rather pointless if we had no intensional description of the clusters that 
the algorithm finds. The traditional parts-of-speech – noun, verb, adjective, adverb, pronoun, conjunction, 
interjection and numeral – are distinguished (defined) using a mix of semantic, functional and morphologic 
criteria. E.g. book is a noun because it refers to a thing (semantic), green is an adjective and not an adverb 
because it is the attribute of a noun (functional), and be is a verb because it can be inflected as a verb. The 
criteria are not well defined, and not mutually exclusive, so that words like intresserad (interested) can be 
either a verb (perfect participle) or an adjective. 

The clustering in our algorithm is based on the immediate neighbours of the words, a criterion which does 
not really fit into any of the three categories above. It does, however, approximate a functional classifi-
cation, if we dare to assume that word order depends on grammatical function. Since the algorithm only 
looks at the immediate neighbours, one may object to the functional interpretation by saying that phrases 
may very well be longer than three words. But the immediate neighbours are themselves dependent on their 
neighbours, so that the clustering indirectly is controlled by a greater context. 

Looking at the resulting clusters, the semantic similarity is striking: 

 
Figure 6: Cluster of some verbs for cognition. 

 

This can be explained in at least two different ways. Firstly, there is the Wittgensteinian idea that the 
meaning of a word is to be found in its relations to other words in the language, which is a way of merging 
the semantic and functional criteria into one – the meaning of a word is a consequence of how it is 
combined and used with other words, or its grammatical function, if you like. Even if one does not agree 
with the strong version of this claim, but prefers a weaker version where the meaning and the function are 
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dependent, this is a useful explanation. Secondly, this algorithm is similar to the strategy often used to find 
synonyms, when the words in a defined window around a word are collected and treated as a bag of words. 
After this collection, the average bags of each word are compared to find similarities. The window in our 
algorithm is small (just one word on each side), but otherwise quite similar. The bag-of-words idea does not 
rely on Wittgenstein's assumption mentioned above, but rather on the idea that certain words will be more 
common when speaking of certain topics. 

The morphological criteria traditionally used to cluster words do not show up in our algorithm. Different 
forms of verbs and nouns are clustered much later than unrelated words with the same inflectional form. 
There are of course exceptions; present and past tense (presens and preteritum) 'finds each-other' easily, as 
demonstrated by the tree above, and plural and singular forms of nouns are clustered early on as well. But 
when varit (been) is clustered with är (am/are/is), the varit cluster already contains 392 other words, 
including fel (wrong), konstigt (strange) and solen (the sun). The är cluster is by then still very much 
limited to verbs in the present and past tenses, but it contains 295 other words, including viktigaste (most 
important) and anledningen (the reason). 

The great advantage of our clustering method is that it is to a high degree theory independent – the only 
assumption it relies on is that words with similar contexts can be exchanged.  

6. Conclusions and further research 
The clustering algorithm that we devised managed to find clusters that to a high degree correspond to our 
intuition, and this is true also for rare words. Since there is no way of finding out what would be the 
'correct' clustering, a precise evaluation is not possible. Though the clustering is based on only the 
immediate neighbours of a word, the resulting clusters clearly show a high degree of semantic sensitivity. 

We have identified two main areas where our clustering strategy can be improved. The first is that 
homonyms should be identified and disambiguated; it is not good as it is today, where the most dominant 
use covers the other uses. 

The second area how to identify interesting 'sections' of the clustering – when should the clustering stop 
and return a set of clusters? Related to this problem is that of our rather arbitrary definitions of threshold 
values, and how much to subtract each time they are decremented. When studying the result files of the 
clustering, we discovered a pattern that might be used to determine when the clustering should stop. The 
diagram in figure 7 below is an effort to illustrate this. 

0

1

1 11 21 31 41 51 61 71 81
Phase

Threshold Number of trees
Number of types in trees

 
Figure 7: Number of trees and number of types in the trees during the clustering. 

 272



The values of the threshold, the number of clusters (trees), and the number of words in the clusters (number 
of types in trees) are plotted against the iteration (phase) number. The actual values of the three parameters 
have been normalised to the interval [0-1] for convenience8. The striking thing about it is the dramatic drop 
in the number of clusters around phase 61, and the corresponding jump in the number of words in trees. 
This is when some clusters have reached a size where they contain so many different words that their 
immediate contexts are 'any other word'. By then the algorithm collapses, and all the clusters are merged. 

A natural end point for the clustering would then be to set the minimum Thrscore just above the value for the 
collapsing phase. However, a more precise analysis of this is necessary. There is no proof that this end 
criterion always works. 
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